Tiede

10 tapaa, joilla perimän tutkiminen on muuttanut maailmaa

Julkaistu

Perimän tutkiminen tuo elämäämme suuria mahdollisuuksia, mutta myös uhkia.

Perimän tutkiminen on muuttanut maailmamme ja käsityksemme siitä, mitä me olemme tai mikään elävä on. Nyt tutustumme erilaisiin tieteen ja elämän osa-alueisiin, joita DNA:n ja perimän tutkiminen on mullistanut.

DNA oli pitkään ylenkatsottu eikä sen yksinkertaisuudessa uskottu voivan sisältää tai pystyvän siirtämään informaatiota. Elämän salaisuus kuitenkin ratkesi Rosalind Franklinin, Maurice Wilkinsin, James Watsonin ja Francis Crickin yhteistyöllä. Kaksi viimeistä keräsi tutkimustulokset yhteen ja paljasti DNA:n nerokkaan rakenteen: Sokeri-fosfaattirunko, johon liittyneet neljä vaihtelevaa emästä (adeniini, guaniini, sytosiini ja tymiini) asettuvat kahtena vastakkaisena juosteena kierteelle. Noiden neljän emäksen järjestys pitää sisällään elämän koodin, geenien sekvenssin.

Huhtikuun 25. päivänä vuonna 1953 julkaistiin Nature-lehdessä artikkeli deoksiribonukleiinihapon, DNA:n, rakenteesta. Tällä listalla käymme läpi asioita, jotka ovat mullistuneet perimän tutkimisen myötä.

Ympäröivän maailman ymmärtäminen

Ihmisen koko perimän eli DNA:n emästen järjestyksen selvittämiseen tähdännyt Human Genome Project valmistui vuonna 2003. Kun monikansallinen tutkijaryhmä paljasti 13 vuoden työn tulokset ihmisen DNA:n parissa, alkoi vauhdikas muiden lajien perimän kartoittaminen.

Teknologia on nykyään kehittynyt jo niin pitkälle, että enää koko genomin sekvensointi (eli emäksien järjestyksen selvittäminen) ei kestä vuosia eikä maksa miljoonia. Mitä enemmän meillä on tietoa muista lajeista, sitä paremmin ymmärrämme maapallon eläviä olentoja.

Perimän tutkiminen on myös mahdollistanut entistä tarkemman elämän sukupuun rakentamisen, ja antanut uutta tietoa eri lajien sukulaisuussuhteista, esimerkiksi kilpikonnat ovat läheisempää sukua linnuille kuin liskoille tai käärmeille. Voimme selvittää minkälainen perimä oli mammutilla tai pussihukalla, ja miksi ne mahdollisesti kuolivat sukupuuttoon.

Advertisement

DNA-viivakoodaus on mielenkiintoinen tapa tutkia ympäristöä. Viivakoodattavat alueet ovat lyhyitä perimän osia, jotka ovat lajin sisällä samankaltaisia, mutta muuntelevat lajien välillä. Tiedeyhteisö on sopinut kullekin lajille oman koodinsa. Erittäin pienestä määrästä orgaanista ainetta, esimerkiksi ulostetta, voidaan selvittää jätöksen tehnyt laji sekä mitä se on syönyt ja minkälaisia mikrobeja sen suolistossa kasvaa.

Se auttaa arvioimaan muun muassa eläimen liikkumista, terveydentilaa ja reagointia stressiin. Viivakoodien avulla monitoroidaan myös elintarviketuotantoa – esimerkiksi selvittämällä onko tietty liha sitä mitä sen sanotaan olevan.

Perimän tutkiminen ei ole pelkkää DNA:ta

Vaikka perimätieto siirtyy DNA:n välityksellä, vaikuttavat sen toimintaan monet ulkopuoliset asiat. DNA pysyy (lähes) samanlaisena solun jakaantumisesta toiseen, mutta kaikki geenit eivät ole aktiivisia jokaisessa solussa. Erilaiset proteiinit, tai esimerkiksi molekyyli nimeltään metyyli, kiinnittyvät DNA:han toimien välillä kuin STOP-kylttinä ja välillä vihreänä valona. Tämän ansiosta meillä on keskenään hyvin erilaisia soluja, esimerkiksi metrien mittaisia hermosoluja ja pieniä, kiekkomaisia punasoluja.

Muut molekyylit säätelevät DNA:n toimintaa myös erilaisissa olosuhteissa. Tätä kutsutaan epigenetiikaksi. DNA:han kiinnittyvät proteiinit voivat saada geenien ilmenemisessä aikaan muutoksia, jotka siirtyvät sukupolvelta toiselle ilman, että varsinainen sekvenssi olisi muuttunut.

Hyvänä esimerkkinä toimii toisen maailmansodan aikana nälänhädässä eläneet hollantilaiset. Tuolloin raskauden alkuvaiheessa olleiden naisten lapsilla on todettu huomattavasti keskivertoa enemmän liikalihavuutta ja riskiä sairastua diabetekseen sekä sydän- ja verisuonisairauksiin. Myöhemmin syntyneillä sisaruksilla ilmiö ei ole toistunut. Hämmästyttävää on se, että riski siirtyi vielä seuraavaankin sukupolveen. Nälkäänäkeviltä äideiltä oli selvästi siirtynyt eteenpäin jotain, mikä ei kuitenkaan selittynyt muutoksella DNA:ssa.

Tutkimuksissa selvisi, että jo aiemmin mainittu geenien kontrolloija metyyli oli syyllinen ilmiöön. Metyyliä ihminen saa täysipainoisesta ravitsemuksesta, joten niin uskomattomalta kuin se kuulostaakin, niin se mitä vanhempasi tai isovanhempasi ovat syöneet, vaikuttaa siihen minkälainen olet. Samanlaisia epigeneettisiä muutoksia voi aiheuttaa muun muassa raskaudenaikainen tupakointi, alkoholinkäyttö sekä myös stressi ja ahdistuneisuus.

Advertisement

Edistysaskeleita maataloudessa

Ihminen on erilaisin keinoin jalostanut kasveja ja eläimiä tuhansien vuosien ajan. Tomaatti, lehmä, banaani ja koira ovat villeinä hyvin erilaisia kuin niiden kesytetyt muodot.

Perimän tutkiminen ja muokkaaminen mahdollistavat huomattavasti nopeamman keinon tuottaa haluttuja ominaisuuksia. Tietenkin se voi johtaa ylilyönteihin, mutta niiltä ei olla vältytty myöskään ennen laboratorioita.

Sana GMO, geenimuunneltu organismi, nostaa monella karvat pystyyn – aivan suotta. Loistava esimerkki geenimuunnellusta kasvista on kultainen riisi, joka riisin oman perimäaineksen lisäksi sisältää pieniä pätkiä maissin ja bakteerien DNA:ta. Nämä lisägeenit saavat riisin tuottamaan beetakaroteenia, joka on A-vitamiinin esiaste. Afrikassa ja Aasiassa tuon vitamiinin puutos sairastuttaa miljoonia ihmisiä vuosittain ja aiheuttaa sokeutumista ja elimistön vastustuskyvyn heikkenemistä.

Kultainen riisi kehitettiin jo 1990-luvun lopulla, ja se olisi loistava apu pelastamaan henkiä ja taistelemaan puutostautia vastaan. Mutta niin kuin monen geenimuunnellun organismin kohdalla, myös kultainen riisi jäi byrokratian ja yleisen vastustuksen uhriksi.

Monet tutkimukset ovat osoittaneet, että laboratoriossa muunnellut kasvit ovat yhtä turvallisia kuin pellolla muokatut, mutta hengenpelastajaksikin kutsuttua riisiä ei ole vastustuksen ja vandalismin vuoksi saatu koeviljelyä pidemmälle.

Farmakogenomiikka

Jäiks, mikä sanahirviö! Farmakogenomiikka tarkoittaa yksinkertaisuudessaan sitä, että tutkitaan, miten tietty lääke sopii jollekin yksilölle.

Jokaisen oma geenisekvenssi vaikuttaa siihen, miten reagoimme johonkin aineeseen – tässä kohtaa lääkkeeseen.

Advertisement

Esimerkiksi monet masennuslääkkeet pääsevät soluihimme sisään solujen pinnalla olevien ABCB1-proteiinien avulla. ABCB1 toimii kuin portinvartija, mutta sen muoto ja toimintakyky vaihtelevat ihmiseltä toiselle. Tästä proteiinista tiedetään kymmeniä eri variaatioita, mikä tarkoittaa erilaista vastetta lääkkeen tehoaineeseen. Toisille riittää pieni annos, toisille sama lääke ei välttämättä tehoa ollenkaan.

Tiettyjen kolesterolilääkkeiden ja kemoterapiassa käytettyjen lääkkeiden kohdalla on havaittu samanlaisia variaatioita vasteessa; nekin johtuvat muunnoksista ABCB1:ssä. Oikeanlaisen annostuksen löytämiseksi potilaalle voidaan tehdä geenitesti ja helposti selvittää, mikä variantti hänellä on.

Kotona tehtävät geenitestit

Et varmasti ole välttynyt geenitestimainoksilta. Nykyään on helppoa, nopeaa ja edullista tilata geenitesti kotiin, ottaa näyte suusta ja lähettää se tutkittavaksi laboratorioon.

Oman geeniperimän selvittäminen on mielenkiintoista, mutta siinä piilee myös vaaroja. Moni haluaa etsiä kadonneita sukulaisia tai selvittää, onko sukua jollekin tunnetulle henkilölle. Tästä listan seuraavassa kohdassa lisää.

On tietysti hauska selvittää, mitä geenit meille itsestämme kertovat. Saat tietää onko vaikkusi kuivaa vai märkää tai himoitsetko suolaisia vai makeita herkkuja. Ne toki tiedät varmasti ilman testiäkin. Mutta geenitestistä saat selville myös alttiutesi sairastua joihinkin perinnöllisiin tauteihin. Mitä ajattelisit, jos selviäisi, että sinulla on korkea alttius sairastua Alzheimerin tautiin? Eläisitkö jatkuvassa pelossa?

Kotona tehtävä geenitesti voi olla mielenkiintoinen, mutta tulokset voivat johtaa vääränlaisiin tulkintoihin ilman ymmärrystä siitä, mitä geneettinen riski tai alttius tarkoittaa.

Advertisement

Kaukaiset ja läheiset sukujuuret

Perimän tutkiminen on auttanut ihmisiä selvittämään omaa paikkaamme elämän kokonaisessa sukupuussa. Keitä on lähimmillä oksilla? Olemme pystyneet selvittämään minkälaisia ovat olleet meitä edeltäneet ja meidän kanssa yhtäaikaa eläneet ihmislajit. Ja miten ne ovat mahdollisesti vaikuttaneet nykypäivän Homo sapiensikseen.

Esimerkiksi vuonna 2017 tehdyssä tutkimuksessa todettiin,  että joiltakin eurooppalaisilta voidaan löytää osia Neandertalin ihmisen geeneistä. Eräs geenisekvenssi muun muassa vaikuttaa ihmisen vuorokausirytmiin, ja siihen onko henkilö aamu- vai iltavirkku. Toinen Neandertalin ihmiseltä siirtynyt ominaisuus on ihon ja silmien värin vaihtelu.

Listan edellisessä kohdassa mainittu geenitesti voi paljastaa tietoja myös yksilöiden lähisukulaisista. Moni adoptoitu, jolla ei ole tietoa biologisista vanhemmistaan, haluaa selvittää oman perimänsä ja ehkä etsiä tietokantojen avulla sukulaisiaan.

Geenitestit ovat äärimmäisen suosittuja maissa, joissa väestö on alkuperäiskansoja lukuunottamatta tullut suhteellisen hiljattain muualta maailmasta, esimerkkeinä Yhdysvallat ja Kanada. Youtube on pullollaan hauskoja videoita ihmisistä avaamassa kirjekuoria, joissa heidän kerrotaan olevan osittain senegalilaisia, ruotsalaisia, irlantilaisia ja korealaisia.

Ikäviäkin asioita sattuu, sillä hauskoina pidetyt tulokset ovat paljastaneet myös monia tapauksia, joissa kaikki sisarukset eivät olekaan molempien vanhempien biologisia jälkeläisiä. Tutkimusten mukaan maasta riippuen 1-10 prosentilla lapsista on eri biologinen isä kuin se, jonka he olivat koko ikänsä kuvitelleet olevan.

Lue myös: DNA-testi voi tuoda musertavan yllätyksen, kun salaisuudet paljastuvat: 9 tosielämän tapausta – mukana myös uskomaton tarina Suomesta

Advertisement

Geenitesti sikiölle

Tiesitkö, että nykyisin voidaan odottavan äidin verikokeesta selvittää DNA-sekvensoinnin avulla myös sikiön perimä? Aiemmin jopa keskenmenoihin johtaneet näytteenottotavat voivat jäädä historiaan.

Geenitestin tekeminen on mullistanut sikiöseulonnan erityisesti niille vanhemmille, joiden lapsilla on riskinä periä jokin vakava tai jopa kuolemaan johtava synnynnäinen vamma. Testi voidaan tehdä muun muassa siinä tapauksessa, jos takana on aiempi ikävästi päättynyt raskaus.

Syntymättömän lapsen geneettinen testaus auttaa myös lääkäreitä valmistautumaan, jos sikiöllä havaitaan esimerkiksi perinnöllinen sydänvaiva, joka vaatii leikkausta pian syntymän jälkeen.

Aikaisessa raskauden vaiheessa suoritettava testaus on toisaalta myös hyvin kiistanalainen aihe, koska vanhemmat saattavat keskeyttää raskauden, jos lapsella todetaan kolme kappaletta kromosomia 21. Tuo mutaatio johtaa Downin syndroomaan, joka ei kuitenkaan ole tappava oireyhtymä, vaan henkilöt voivat elää onnellista ja täysipainoista elämää.

Vaarana on myös se, että ihmiset alkavat tehdä valikoivia raskaudenkeskeytyksiä, koska haluavat tiettyä sukupuolta olevan tai vaikkapa ruskeasilmäisen lapsen.

Rikostutkinta mullistui

Mietitkö ikinä TV-sarjoja katsoessasi, että miten DNA-analyysilla voidaan saada rikoksen tekijä selville?

Se 0,1 % ihmisen perimästä, joka vaihtelee yksilöiden välillä, sisältää lyhyitä toistojaksoja, joita kutsutaan lyhenteellä STR (short tandem repeats). Kyllä, olemme kaikki 99,9 prosenttisesti samanlaisia.

Advertisement

Kun esimerkiksi rikospaikalta löydettyä DNA-näytettä analysoidaan, vertaillaan juuri näitä toistojaksoja, joiden määrät vaihtelevat yksilöllisesti. Geenien toimintaan STR:t eivät vaikuta. Minulla voi jotain pätkää olla 14 kappaletta ja jotain toista taas 10 kappaletta. Kaverilla ensimmäistä pätkää on 12 ja toista 17.

Kun DNA-näytteestä tutkitaan tarpeeksi monta toistojaksoaluetta, voidaan jokaiselle ihmiselle muodostaa oma geneettinen sormenjälkensä. Tällä hetkellä esimerkiksi FBI:n rikoslaboratorio käyttää profiilin muodostamiseen 20 eri STR:ää. Teoriassa se riittää erottamaan yhden henkilön kaikista muista maailman ihmisistä. DNA on myös vapauttanut lukuisia syyttöminä vankilaan tuomittuja henkilöitä, kun todistusaineisto on jopa vuosikymmeniä myöhemmin ja teknologian kehityttyä tutkittu uudelleen.

Kun nämä DNA-jaksot periytyvät sukupolvelta toiselle, ne usein joko lyhenevät tai pitenevät yhden toiston verran. Niiden avulla voidaan selvittää sukulaisuussuhteita ja tunnistaa ihmisiä. Esimerkiksi syyskuun 11. päivän terrori-iskuissa menehtyneiden jäänteistä tehdään edelleen DNA-analyysejä ja tunnistuksia.

Lue myös: 10 syyttömänä tuomittua, jotka istuivat vuosikausia viattomina vankilassa

Harvinaiset sairaudet

Maailmassa elää 350 miljoonaa ihmistä, jotka kärsivät harvinaisista sairauksista, joihin lasketaan alle 200 000 henkilöllä diagnosoidut sairaudet. 80 prosenttia niistä sairauksista on perinnöllisiä ja 95 prosenttiin ei ole hoitokeinoa. Ei kuulosta hyvältä!

Lue myös: Harvinaiset sairaudet – 10 äärimmäisen outoa vaivaa

Advertisement

Harvinaisten sairauksien diagnosointi on pitkään ollut hyvin haasteellista, koska joko lääkärit eivät ole niistä tienneet tai eivät ole osanneet ajatellakaan.

Perimän tutkiminen on kuitenkin mullistanut harvinaisten sairauksien löytämisen ja hoitamisen. Kun koko genomi voidaan selvittää, voi sieltä löytää muutoksia, jotka ovat sairastavilla samanlaisia. Helppoa miljoonien emäsparien läpikäyminen ja vertaileminen ei ole, koska kellään ei välttämättä ole mitään käsitystä, mistä mutaatiota pitäisi lähteä etsimään. Mutta nykyään se on kuitenkin mahdollista!

Ja jos sairauteen tiedetään syy, voi siihen yrittää kehittää lääkkeen.

Perimän muokkaaminen

Sen jälkeen, kun ihmisen perimä saatiin selvitettyä, alettiin kehittää tehokkaita keinoja sen muokkaamiseen.

Nyt ei puhuta siitä, että kiinalainen lääkäri kloonaa vauvoja. Teknologia siihen toki on ollut valmis, onhan rottia ja lampaita kloonattu, miksi ihmistä ei siis pystyisi.

Ihmisen genomia pystytään muokkaamaan niin, että muutokset siirtyvät sukupolvelta toiselle. Mutta kysymys kuuluukin: Voiko niin tehdä? Tällä hetkellä sukusolujen tai vain erilaistumattomia soluja sisältävän alkion soluja ei saa lain mukaan muokata.

Advertisement

Muuten geeniterapia on käytetty ja sallittu hoitomuoto. Miljoonia ihmisiä vuosittain tappava, perinnöllinen sirppisoluanemia voidaan eläinkokeiden perusteella parantaa ottamalla potilaan luuytimestä punasolujen kantasolut, poistaa geeniteknologian avulla taudin aiheuttama mutaatio ja palauttaa virheettömät solut kantajaan. Kivulias sirppisoluanemia on hiirillä kyetty hoitamaan. Ihmiskokeet ovat tällä hetkellä käynnissä.

Lue myös:

Tiede

Lumoavat vauvat – 10 mielenkiintoista faktaa vastasyntyneistä

Julkaistu

Vauvat ovat ihmeellisiä niin monella tavalla. Ihan omina itsenään, mutta kaikkien käsittämättömien kykyjensä ansiosta. Tässä Listafriikki.com esittelee 10 uskomatonta faktaa vauvoista.

Vauvat ovat söpöjä ja ihania. Toisaalta ne itkevät ja valvottavat. Mutta vauvat myös tekevät ja osaavat käsittämättömiä asioita, joita ei heti avuttomista pikkuihmisistä uskoisi.

Monet taidoista katoavat vauvan ensimmäisen elinvuoden aikana, olivat ne sitten alitajuisia refleksejä tai hämmästyttävä kyky tunnistaa kasvoja. Odotusaikana vauvat kuulevat musiikkia, ja muistavat kappaleita, joita äiti on kuunnellut. Kohdussa ollessaan vauvat oppivat myös tunnistamaan äidin ja tämän kanssa paljon aikaa viettävien ihmisten äänet. Koirataloudessa vauva oppii oman lemmikin haukunnan, eikä säpsähdä sitä syntymänsä jälkeen.

Vauvat ovat pullollaan ihmeellisiä asioita! Ovat ne tietysti ihmeellisiä ilman mitään mielenkiintoisia faktojakaan. Joka vuosi syyskuun viimeisenä perjantaina vietetään valtakunnallista Vauvan päivää, joten eipä tänään paljon parempaa aihetta listalle voisi keksiä!

Listafriikki sukeltaa siis nyt vauvojen kiehtovaan maailmaan ja listaamme 10 yllättävää asiaa vastasyntyneistä.

10. Ei kyyneleitä ensimmäiseen kuukauteen

Nyt ei kannata polttaa päreitä; en väitä etteivätkö vauvat itkisi. Itkuhan on heti syntymän jälkeen merkki siitä, että vastasyntyneen keuhkot ovat lähteneet toimimaan. Se taitaa olla ainut hetki, kun tuoreet vanhemmat toivovat ja odottavat kuulevansa jälkikasvunsa parkaisun.

Kyynelneste suojaa silmiä jokapäiväisessä elämässä, mutta hyvin voimakkaat tunteet (ilo, pelko, suru) saavat aikaan runsaan kyyneleiden tuotannon. Tuolloin isompi määrä nestettä suojaa paremmin silmiä stressaavissa tilanteissa. Kyyneleiden eritys saattaa olla myös merkki aivoille, että niiden on tuotettava kehon omia kivunlievittäjiä, mielihyvähormoneja.

Advertisement

Vauvat eivät kuitenkaan pysty tuottamaan kyyneleitä, koska niiden kyynelrauhaset eivät ole vielä täysin kehittyneet. Vaikka kasvot olisivat kuinka rutussa ja kiukusta punaiset sekä huuto korvia huumaavaa, pysyvät silmät kuivina.

Pienokaiset tuottavat sen verran kyynelnestettä, jotta silmät pysyvät kosteina, mutta ei tarpeeksi, että kyyneleitä pääsisi vierähtämään poskelle. Myös hikirauhaset ovat keskeneräiset, joten vauva alkaa hikoilla vasta muutaman viikon päästä syntymästä. Kyyneleet alkavat virrata, kun vauva on noin kuukauden ikäinen. Siihen asti parkuminen voi vaikuttaa loistavalta teatteriesitykseltä.

Lue myös: Miksi ihminen on ainoa eläin, joka itkee? 11 faktaa itkemisestä ja kyynelistä

9. Vauvat näkevät aluksi punaista

No ei nyt ihan kirjaimellisesti. Vastasyntyneet vauvat eivät näe juuri mitään, mutta hiljalleen etäisyydet ja muodot alkavat tarkentua. Äidin (tai kuka ensisijainen huolehtija onkaan) kasvot ovat ensimmäinen asia, johon vauva kiinnittää huomiota.

Elämän ensimmäisten päivien maisemat ovat täynnä harmaan eri sävyjä. Vauvan silmät kehittyvät kuitenkin nopeasti näkemään värit. Jo noin viikon jälkeen mustavalkoiseen ympäristöön tulee mukaan punainen, ja sen jälkeen hiljalleen oranssin ja keltaisen sävyt.

Noin viiden kuukauden iässä vauvalle on avautunut koko värien kirjo. Sinisen ja violetin vauva näkee viimeisenä, koska niiden aallonpituudet ovat lyhyimpiä ja silmän verkkokalvolla on vähiten reseptoreita juuri siniselle valolle.

Advertisement

Lue myös: 10 mielenkiintoista faktaa väreistä

8. Vauvat ovat multitaskaajia

Kun näkee jonkun hotkivan ruokaa epäinhimillisellä nopeudella, tekisi mieli kehottaa tätä pysähtymään ja haukkaamaan välillä happea. Todellisuudessa tuon henkilön, niin kuin meidän kaikkien, on pakkokin pitää paussia kesken syömisen, koska hengittäminen ja nieleminen eivät onnistu yhtä aikaa.

Vauvat eivät tarvi Whatsappia, Netflixiä, työpaikkaa tai autoa. Mutta ravintoa ja happea ne tarvitsevat.

Arvaatkin varmaan jo: Vastasyntyneet pystyvät nielemään ja hengittämään samanaikaisesti!

Vauvoilla kurkunpään ja koko kurkun rakenne on erilainen kuin aikuisilla, mikä mahdollistaa tämän käsittämättömän hienon ominaisuuden. Noin puolen vuoden iässä kurkku kuitenkin asettuu sellaiseksi, kuin se tulee olemaan, joten vauvat menettävät tämän supervoimansa, ja samalla myös riski tukehtua kasvaa.

Toisaalta tuo kurkun rakenteen muuttuminen mahdollistaa ihmisille toisen mainion ominaisuuden, nimittäin kyvyn puhua.

Advertisement

7. Vauva tuijottaa sinua, koska olet kaunis

Olet varmasti lukenut siitä, kuinka tietynlaiset kasvot ovat universaalisti kauniit. Tietokoneohjelmilla on luotu keinotekoisia kasvoja, jotka ovat täysin symmetrisiä, ja joissa on tietyt ominaisuudet ja piirteet. Kuulostaa kyllä humpuukilta, että kaikki maailman ihmiset pitäisivät samoja asioita kauniina.

Mutta kun asiaa on tutkittu, on voitu päätellä, että asia tosiaan on näin. Tietynlaiset kasvonpiirteet miellyttävät ihmisiä keskiarvollisesti enemmän kuin toiset. Tiedon tarpeellisuudesta voidaan toki olla montaa mieltä.

Ja tokihan tätä on myös tutkittu vauvoilla. Kokeeseen otettiin mukaan kuvia ihmisistä, joita yleisesti pidettiin hyvännäköisinä, sekä niitä, jotka eivät miellyttäneet suuren yleisön silmää. Voitiin todeta, että vauvat katsoivat huomattavasti kauemmin ”hyvännäköisiä” ihmisiä, ja heissä havaittiin samanlaisia kehon reaktioita kuin oman äitinsä nähdessään. Toisessa testissä laitettiin kaksi kuvaa vierekkäin, ja vauvat huomioivat ”hyvännäköisen” henkilön selvästi useammin.

Joten seuraavalla kerralla, kun viereisen kärryn vauva alkaa tuijotella sinua kauppajonossa, voit onnitella itseäsi: sinä olet todistetusti kaunis!

6. Vastasyntyneen vauvan kuukautiset

Kaikessa yksinkertaisuudessaan naisen kuukautiset johtuvat siitä, että estrogeeni- ja progesteronihormonien tasot putoavat, mikä saa aikaan kohdun limakalvon vuotamisen ulos. Siinä asia erittäin yksinkertaistettuna.

Ollessaan kohdussa vauvat ovat äidin kehon armoilla ja ovat kaikkien verenkierrossa olevien aineiden, myös hormonien, vaikutuksenalaisia. Kun lapsi syntyy ja ”irtautuu” äidistään, laskevat hormonitasot tietenkin nopeasti, mikä voi tyttövauvoilla saada aikaan saman reaktion kuin aikuisilla naisilla, nimittäin kuukautiset.

Mutta muuten kuin verenvuodon osalta tapahtumassa ei ole mitään samaa kuukautiskierron kanssa. Verenvuoto saattaa säikäyttää vanhemmat, mutta on täysin normaali ja suhteellisen yleinen ilmiö: sitä tavataan noin neljäsosalla tyttövauvoista ensimmäisen viikon aikana syntymän jälkeen.

Advertisement

5. Äiti ei ole ainut, jonka rinnat tuottavat maitoa

Galaktorrea eli rintojen maitovuoto on melko yleinen, hormonaalisista syistä johtuva oire synnyttäneillä naisilla. Miehillä ja synnyttämättömillä naisilla galaktorrea voi johtua lääkkeistä tai jostain sairaudesta, ja on aina tutkittava lääkärillä.

Noin viidellä prosentilla vastasyntyneistä, niin tytöillä kuin pojillakin, rupeaa rinnat kasvamaan (kuin kevyt turvotus) ja nänneistä voi jopa tihkua maitomaista eritettä. Tässä on kyse samanlaisesta, hormonitasonlaskun aiheuttamasta reaktiosta, kuin edellisen kohdan ”kuukautisissa”. Sen lisäksi äiti tuottaa uusia hormoneja, jotka välittyvät vauvalle rintamaidon mukana. Pientä tihkumista voi kestää jopa muutamia viikkoja ja normaalisti se loppuu itsekseen.

Entisaikoina vastasyntyneiden rintaeritettä on kutsuttu ”noidan maidoksi”, ja siinä oletettujen taikavoimien takia sitä on myös yritetty lypsää vastasyntyneiltä. Jäiks!

4. Katoavat refleksit

Vauvalla on uskomattomia refleksejä eli heijasteita, joista suurin osa häviää elämän ensimmäisten kuukausien jälkeen. Osaan niistä on järkevä evolutiivinen syy, mutta joidenkin tarkoitus jäänee ikuiseksi mysteeriksi. Tässä kymmenistä heijasteista vain muutama esimerkki.

Asymmetrinen tooninen niskaheijaste tarkoittaa sitä, että kun lapsi kääntää selinmakuulla päänsä sivulle, ojentuvat saman puolen käsivarsi ja jalka ja vastakkaiset raajat koukistuvat. Tämä häviää muutaman kuukauden iässä, ja on nimenomaan sellainen heijaste, jolle ei ole löydetty lopullista tarkoitusta.

Näihin seuraaviin kolmeen taas on:

Elettyään yhdeksän kuukautta nesteen täyttämässä pussissa, lienee päivän selvää, että vauva on vedessä kuin kotonaan. Syntymän luulisi toki muuttavan asiaa, kun lapsi alkaa hengittää omilla keuhkoillaan ja aloittaa totuttelun kuivalle maalle. Vauvojen ”sukeltamisrefleksi” saa kuitenkin aikaan sen, että he lakkaavat hengittämästä vedessä ja sydämenlyönnit harvenevat. Kyky olla kuin kala vedessä säilyy puolivuotiaaksi asti.

Advertisement

Etsimisheijasteessa taas on kyse siitä, että kun vauvan poskea tai suuta hipaisee, kääntää hän päätään kosketuksen suuntaan nänniä etsiäkseen.

Vauvojen tarttumisheijaste on hyvin voimakas niin käsissä kuin jaloissakin. Lapsi tarttuu sormillaan tai varpaillaan kämmentä tai jalkapohjaa vasten painettuun esineeseen. Se on ollut äidin turkissa roikkuvalle esi-ihmisvauvalle elintärkeä tapa. Sormien ote on niin tukeva, että vauvaa voisi huoletta nostaa ilmaan.

3. Elävä kasvojentunnistusohjelma

Vauvat vaikuttavat tunnistavan ulkonäöltä vain äitinsä tai jonkun muun, jonka kanssa he viettävät suuren osan ajastaan. Muut ihmiset eivät aiheuta pienissä vauvoissa erityisiä reaktioita siihen suuntaan, että ne tietäisivät nähneensä esimerkiksi isovanhempansa aiemmin.

Se ei kuitenkaan pidä paikkaansa, vaan kun vauvan näkö lähtee tarkentumaan syntymän jälkeen, pystyy hän kuuden kuukauden ikäisenä tunnistamaan uusia kasvoja huomattavasti paremmin kuin aikuiset. Asiaa on tutkittu esimerkiksi siten, että vauvoille on näytetty kasvokuvia, jonka jälkeen heidän reaktioitaan ja aivosähkökäyriään seurattiin. Tutkimuksen edetessä havaittiin, että vauvat katsoivat huomattavasti kauemmin kuvia, joita he eivät olleet ennemmin nähneet.

Koetta vietiin pidemmälle: lapsille näytettiin kuvia apinoiden kasvoista ja reaktiot olivat samoja. Vauvat tunnistivat jopa ylösalaisin näytetyt uudet kuvat sellaisiksi, joita he eivät olleet ennen nähneet. Aikuisille eri lajien kasvojen erottaminen on lähes mahdotonta.

Valitettavasti kasvojen tunnistuskyky tosiaan katoaa vuosien kuluessa. Jopa oman lajimme sisällä erilaiset kasvonpiirteet tuottavat ihmisille ongelmia. Nyt seuraa erittäin radikaali yleistys, mutta kadonneen tunnistuskyvyn takia aasialaisten mielestä suurin osa eurooppalaisista näyttää samalta ja toisin päin.

Advertisement

2. Vastasyntynyt ryömii, jos sen on pakko

Vauvan liikkeelle lähteminen on juhlittu hetki jokaisessa perheessä. Ryömimistä saa kuitenkin yleensä odottaa reilusti yli puoli vuotta ja jotkut vauvat hyppäävät jopa kokonaan tuon vaiheen yli.

Tutkimuksissa on kuitenkin todettu, että ihmisellä, kuten muillakin nisäkkäillä, on synnynnäinen vaisto ja kyky löytää ravinnon lähde eli nisä. Rinnalle ryömimisessä ”breast crawl” vauva laitetaan heti synnyttyään äidin vatsan päälle ja annetaan olla siinä omissa oloissaan.

Jossain vaiheessa täysin avuttomana pidetty vastasyntynyt alkaa ponkimaan äidin vatsaa vasten ja puskemaan itseään eteenpäin kohti nänniä. Vauva löytää maidonlähteen esimerkiksi hajuaistin avulla ja ottaa nännin oma-aloitteisesti suuhun.

1. Äidin ihmeparantuminen

Äidin ja lapsen välillä on istukka, jonka kautta kulkee aineita kumpaankin suuntaan. Tuon kudoksen voivat läpäistä myös ihmisen solut, jotka ovat verrattain suuria kuljetettaviksi seinämän läpi, mutta niin vain käy. Sikiön kantasoluja siirtyy äidin verenkiertoon, josta ne voivat kulkeutua kudoksiin ja kiinnittyä sinne. Koska nuo kantasolut ovat pluripotentteja, (ne pystyvät ohjauksen alla erilaistumaan miksi tahansa kehon soluksi), ohjaavat viereisistä soluista tulevat signaalit niitä kehittymään kaltaisikseen.

Sikiön soluja on löydetty muun muassa äidin keisarinleikkausarvesta, jossa niiden on todettu osallistuneen kudoksen korjaukseen tuottamalla kollageenia. SLE:ssä (yleistynyt punahukka), joka on reumasairauksiin kuuluva autoimmuunitauti, sikiön solujen on havaittu hyökkäävän äidin tulehtuneita kudoksia vastaan.

Paperin kääntöpuolella on se, että äidin elimistölle vieraat solut (olkoonkin oman lapsen) voivat myös laukaista autoimmuunisairauksia ja jopa kasvaimen muodostumisen. Toisaalta ainakin rintasyövän tapauksessa sikiön solujen on ajateltu suojaavan syöpäsoluja vastaan.

Solujen siirtymistä arvellaan tapahtuvan jokaisessa raskaudessa ja äideiltä on löydetty lastensa soluja jopa useita vuosikymmeniä raskauksien jälkeen. Niitä on ollut veressä, iholla, munuaisissa, luuytimessä, maksassa ja jopa aivoissa. Helpoiten tämä on tietysti saatu tutkittua etsimällä merkkejä Y-kromosomeista, joita naisella ei luonnollisesti ole.

Advertisement

Lue myös:

Continue Reading

Tiede

Alpeilla kohoavan Matterhornin huippu onkin afrikkalainen: 10 huippufaktaa vuorista ja vuoristoista – osa 2

Julkaistu

Nyt listataan mielenkiintoisia ja yllättäviä faktoja vuorista ja vuoristoista.

Vuoristot ovat meille suomalaisille lähinnä matkailukohteita muualla maailmassa, mutta noin 15 prosentille maapallon väestöstä ne ovat koti. Nyt listataan faktoja vuorista ja vuoristoista.

Hieman alle kolmasosa maapallon maapinta-alasta on vuoristoa ja näillä alueilla asuu noin 1,1 miljardia ihmistä, joista iso on vähävaraisia. Vuorten rinteillä ja läheisyydessä asuvat ihmiset ovat täysin riippuvaisia vuoristojen luonnosta, vedestä ja nykyään myös niille suuntautuvasta turismista. Tällä listalla on luvassa monenlaista asiaa: paljon tietoa ja yllättäviä faktoja. Tervetuloa vuorten jylhään maailmaan!

Lista julkaistaan kahdessa osassa, joista tämä on jälkimmäinen. Ensimmäiset vuorifaktat voit lukea tästä:

10 huippufaktaa vuorista ja vuoristoista – osa 1

Vuoristoja on kiittäminen myös ruoasta

Ruokakaupassa asioidessa tulee harvoin mietittyä, että mistä mikäkin ruoka-aine on kotoisin; siis alunperin. Tokihan moni varmasti tarkistaa, ovatko tomaatit kotimaisia, ovatko perunat läheiseltä tilalta ja kuinka kaukaa omenat on kauppaan kuljetettu.

Maailman 20 tärkeimmästä ruokakasvista kuusi on lähtöisin vuoristoista. Vuorilla kotoperäisinä eläneitä kasveja on jalostettu pitkälle, joten nykyiset lajikkeet eroavat valtavasti alkuperäisistä. Mutta vuoria on kiittäminen jo edellä mainituista perunoista, tomaateista ja omenasta, sekä maissista, durrasta ja ohrasta.

Advertisement

Ainutlaatuista ja monimuotoista vuoristoluontoa

Maapallolla on alueita, joita kutsutaan luonnon monimuotoisuuden keskuksiksi – biodiversity hotspot. Näillä alueilla lajimonimuotoisuus on poikkeuksellisen suuri ja niillä elää paljon sellaisia lajeja, joita ei esiinny missään muualla maailmassa. Siksikin näitä keskuksia on äärimmäisen tärkeää suojella, sillä jos niiltä katoaa lajistoa, tarkoittaa se eliölajin katoamista koko maailmasta.

Sademetsät ja koralliriutat ovat ehkä tunnetuimpia hotspoteja, mutta YK:n mukaan puolet maapallon monimuotoisuuden keskuksista sijaitsee vuoristoissa. Otetaan esimerkiksi Kapkaupungin liepeillä, Etelä-Afrikassa, sijaitseva reilun kilometrin korkuinen Pöytävuori. Reilun 50 neliökilometrin alueella elää enemmän kotoperäisiä kasvilajeja kuin koko Yhdistyneessä kuningaskunnassa.

Kestävän turismin puolesta

Vuoristoiset alueet suosittuja matkailukohteita, mutta mielessä on tietenkin pidettävä, että kyse on jonkun kodista. Vuosittain joulukuun 11. päivänä vietetään YK:n kansainvälistä vuoristopäivää. ja viime vuosina tuon päivän teemat ovat suunnanneet katseita tulevaisuuteen.

Esimerkiksi vuonna 2021 kansainvälisen vuoristopäivän teema oli kestävä turismi. Vaikka vierailijat eivät aina ole positiivinen juttu kaikkine lieveilmiöineen, on turismi tärkeä elinkeino sadoille miljoonille vuoristojen asukkaille sekä myös merkittävä tulovirta ympäristönsuojelulle.

Itse asiassa noin 15-20 prosenttia kaikesta maailmanlaajuisesta turismista kohdistuu vuoristoseuduille. Vuoristoissa elävät yhteisöt ovat usein vähävaraisia, joten turismi on nykypäivänä niille elinehto. Samaan aikaan on pakko kehittää erilaisia kestäviä ratkaisuja, jota tasapaino luontokohteiden suojelun ja tärkeän turismin välillä säilyy.

Vuoden 2024 joulukuussa kansainvälistä vuoristopäivää vietetään jälleen tulevaisuutta silmällä pitäen. Nyt halutaan kannustaa nuoria kehittämään vuoristojen elämää: sekä paikallisten että turismin näkökulmasta. Luonnonsuojeluun, maatalouteen ja matkailuun haetaan innovatiivisia ja kestävän kehityksen mukaisia, moderneja ratkaisuja.

Kahden mantereen Matterhorn

Vaikka amatöörin silmille monet vuoret näyttävät kuvissa aivan samanlaisilta eikä niitä ole helppo erottaa toisistaan, on Sveitsissä kohoava Matterhorn helppo tunnistaa. Liekö syynä Toblerone-suklaa!?

Advertisement

Matterhornin pyramidin mallisen huipun seinämät ovat mielenkiintoisesti kohti kutakin neljää pääilmansuuntaa. Seinämiä erottavat neljä terävää harjannetta: Furggen, Leone, Zmutt ja Hörnli.

Matterhornin erityisyyttä lisää se, että vuoren huippu on todellisuudessa Afrikasta. Kauan aikaa sitten kaikki se, mikä nyt on Euroopan korkein vuoristo, oli joskus meren pinnan alla. Muinainen Tethysmeri erotti aikoinaan toisistaan pohjoisen Lauraasian mantereen (Pohjois-Amerikka, Euraasia, Grönlanti) ja eteläisen Gondwanan jättimantereen (muun muassa Afrikka, Etelä-Amerikka, Australia ja Etelämanner).

Noin 45 miljoonaa vuotta sitten Afrikan laatta törmäsi Euraasian laattaan, jolloin sekä Alpit että Pyreneiden vuoristo rupesivat muodostumaan.

Matterhorn on merenpinnasta mitattuna 4478 metriä korkea ja ensimmäiset 3400 metriä siitä koostuu pitkälti Tethysmeren pohjan sedimenttikivistä. Matterhornin rinteiltä, kuten muualtakin Alpeilta, voi löytää esimerkiksi simpukoiden fossiileja.

Kun Afrikan litosfäärilaatta iskeytyi hitaasti, mutta voimalla Euraasiaan, puski kovempi gneissi vanhan merenpohjan päälle. Jääkaudet kuluttivat pois suurimman osan kovista kivilajeista, mutta Matterhornin viimeinen vajaa kilometri ennen huippua on afrikkalaista alkuperää. Minkä mantereen vuori Matterhorn siis geologisesti onkaan?

Advertisement

Kaikki kunnia Mount Everestille, mutta…

Ensinnäkin: Mount Everestin huippu ei ole maapallolla se piste, joka on lähimpänä avaruutta. Kyllä, Mt. Everest on merenpinnasta mitattuna 8848 metriä korkea ja täten maailman korkein vuori. Mutta taivas ja tähdet ovat lähempänä, jos niitä kohti kurottaa Ecuadorissa, Andeilla, sijaitsevan Mount Chimborazon huipulta.

Meren pinnasta mitattuna Mount Chimborazo on ”vain” 6268 metriä korkea, eikä tuolla mitalla mahdu sadan maailman korkeimman vuoren joukkoon. Mutta jos lähdetään liikkeelle Maan ytimestä, on Mount Chimborazon huippu yli kaksi kilometriä kauempana lähtöpisteestä kuin Mount Everestin lakipiste.

Tämä hämmentävä fakta selittyy sillä, että maapallo ei ole täysin symmetrinen pallo, vaan se on planeettamme pyörimisliikkeestä johtuen päiväntasaajan kohdalta hieman pullollaan.

Toisekseen: Jos korkeus mitattaisiin merenpinnan sijaan vuoren juurelta, olisi Havaijilla kohoava Mauna Kea (kuvassa) maailman korkein vuori. Sen virallinen korkeus on 4207 metriä eli alle puolet Mt. Everestistä. Mutta tämä uinuva tulivuori lähtee todellisuudessa kohoamaan kaukana merenpinnan alapuolella ja se peittoaa kokonaismitassa Himalajan hallitsijan lähes puolella kilometrillä.

Mauna Kealla on nimittäin mittaa 9323 metriä, mutta veden alla olevia vuorenrinteitähän ei lasketa.

Joten kaikki kunnia maailman korkeimmalle vuorelle, Mount Everestille. Ilman mitään muttia.

Advertisement

Lue myös:

Continue Reading

Tiede

Miksi valo houkuttelee hyönteisiä ja miksi hyönteiset päätyvät kuollessaan aina selälleen?

Julkaistu

Miksi valo houkuttelee hyönteisiä ja miksi hyönteiset kuolevat aina selälleen? Näitä pohditaan tänään lukijoiden kysymyksissä.

Lukijoiden kysymyksissä Listafriikki sukeltaa tänään ötököiden maailmaan. Miksi valo houkuttelee hyönteisiä ja miksi hyönteiset kuolevat aina selälleen?

Laittakaahan taas mieltänne askarruttavia ajatuksia tulemaan! Kysymyksenne, omat tai kaverin, voitte laittaa esimerkiksi sähköpostitse osoitteeseen listafriikki(at)gmail.com (muista muuttaa (at) tilalle miukumauku-merkki) tai liity mukaan Listafriikkiläiset-ryhmäämme ja esitä kysymyksiä sekä keskustele siellä!

Miksi käyttää itse aikaa päänsä puhki pohtimiseen ja netin loputtomaan pläräämiseen, kun voi panna asialle pari siihen erikoistunutta listafriikkiä?

Miksi valo houkuttelee hyönteisiä?

Teorioita sille, miksi valo houkuttelee hyönteisiä puoleensa, on monia. Tutkijatkaan eivät ole täysin yksimielisiä syystä, mutta yksi suosituimmista teorioista liittyy suunnistamiseen. Hyönteiset käyttävät luonnollisia valonlähteitä, kuten Kuuta ja Aurinkoa, pysyäkseen kärryillä lentosuunnasta.

Pohjoista kohti lentävä yökkönen voi esimerkiksi ajatella pitävänsä Kuun oikealla puolellaan, mutta kun peliin tuleekin joku ulkovalo, hämmentää se hyönteistä melkoisesti. Se voi päätyä kiertämään lamppua loputtomasti, sillä siten se on Kuuksi kuvittelemaansa valoon nähden koko ajan samassa kulmassa. Erityisesti houkuttelee sellainen keinovalo, jossa on ihmissilmälle havaitsematonta ultraviolettivaloa, jota siis on myös auringonvalossa.

Ultraviolettivalo on takana myös toisessa teoriassa, jonka mukaan hyönteinen erehtyy luulemaan lamppua kukaksi. Monet yöperhoset imevät nektaria kukista, joiden tiedetään heijastavan UV-valoa.

Advertisement

Vai voisivatko hyönteiset kenties pitää valoa merkkinä pakoreitistä? Jos hyönteinen tuntee olonsa uhatuksi ja näkee valon, se lentää sitä kohti, koska reitin edessä ei näytä olevan mitään. Pimeässä täytyy myös väistellä puita ja muita esteitä: valossa reitti on selvä ja siksi houkutteleva. Keinovalon keksiminen on siis ollut hyönteisten kannalta pahin mahdollinen asia, sillä ne eivät ole sopeutuneet siihen mitenkään.

Miksi hyönteiset kuolevat aina selälleen?

Ketarat osoittavat kohti taivasta ja hyönteinen on liikkumattomana paikallaan – se on siis heittänyt henkensä. Kaikille varmasti tuttu näky, mutta nyt kysymys kuuluukin, että miksi näin käy. Selityksiä on monia.

Jos hyönteinen päätyy syystä tai toisesta selälleen, pystyy se normaalitilanteessa jalkojaan heiluttelemalla kääntymään oikein päin. Kääntyminen ei kuitenkaan onnistu, jos hyönteinen on heikossa kunnossa tai sen hermosto ei toimi kunnolla; syynä voi olla ruoan- ja vedenpuute tai yksinkertaisesti vanhuus. Niinpä selälleen kaatunut tai tipahtanut hyönteinen jää paikalleen ja kuolee siihen asentoon.

Hyönteismyrkyt vaikuttavat juuri hermostoon ja varsinkin kovakuorisilla hyönteisillä, kuten torakoilla, on vaikeuksia pitää itsensä pystyssä, kun niihin suihkuttaa myrkkyjä. Toisen puolen jalat menettävät hallinnan ensin ja sen johdosta ötökkä kellahtaa kumoon. Myrkyt voivat saada aikaan kouristuksia, joiden aikana hyönteinen sätkii jaloillaan holtittomasti eikä saa raajojaan enää synkkaamaan, jotta voisi kääntyä oikein päin.

Kaikkein yksinkertaisin selitys sille, että kuollut hyönteinen makaa selällään, johtuu painovoimasta. Yläilmoissa, puussa tai seinällä kuollut, ja maahan tippuva hyönteinen päätyy painovoiman vaikutuksesta painavampi puoli eli selkä kohti maata.

Lue myös:

Continue Reading

Tiede

Maailman puuduttavimmassa livestriimissä seurataan ”valuvaa” pikipisaraa – Tällaisia ovat kauimmin kestäneet tieteelliset kokeet

Julkaistu

Tämän listan tieteelliset kokeet ovat kestäneet ja tulevat kestämään huomattavasti kauemmin kuin yhdenkään tutkijan työura.

Tieteelliset kokeet suunnitellaan usein kestämään viikkoja tai kuukausia, parhaimmillaan muutaman vuoden. Toisin on näiden tutkimusten kohdalla.

Listafriikki keräsi kasaan tutkimuksia, jotka ovat kestäneet jo tähän mennessä useita vuosikymmeniä ja jopa yli vuosisadan, eikä loppua ole näkyvissä.

Maailma ympärillä voi muuttua ja tutkijasukupolvet vaihtua moneen kertaan, mutta nämä tieteelliset kokeet tulevat jatkumaan… Noh, kuka tietää miten kauan.

Oxfordin soiva kello

Clarendonin laboratorio Oxfordin yliopistossa, Englannissa, on tunnettu lähinnä yhdestä asiasta. Siellä sijaitsee kello, joka on lyönyt jatkuvasti yli 180 vuoden ajan.

Messinkinen kello toimii kahdella ikivanhalla patterilla, jotka on jossain vaiheessa päällystetty sulatetulla rikillä, jotta ympäristön kosteus ei pääse niitä tuhoamaan. Paristojen sisällöstä ei kellään ole täyttä varmuutta, eikä kukaan myöskään tiedä, milloin ne kuluvat loppuun.

Vuodesta 1840 saakka kello on lyönyt yli 10 miljardia kertaa, ja nykyisin sitä pidetään lasisen kuvun takana – osittain myös sen takia, ettei loputon kellonkilkatus ajaisi ketään hulluuden partaalle. Laboratorion tutkijat elävät jatkuvassa odotuksessa, sillä vaikka kellon toisaalta haluttaisiin lyövän ikuisesti, ei osa malta odottaa, että pääsisi käsiksi patterien saloihin.

Advertisement

E. colin evoluutio

Evoluution seuraaminen reaaliajassa on lähes mahdotonta, sillä muutokset tapahtuvat vuosituhansien ja -miljoonien aikana. Ihmiselämä ei riitä eliölajin kokonaisvaltaisen muutoksen seuraamiseen luonnossa, mutta onneksi laboratorio-olosuhteissa voidaan saada aikaan (lähes) ihmeitä.

Massiivisen haasteen pitkän ajan evoluution tutkimukseen otti vastaan Michiganin yliopiston evoluutiobiologi Richard Lenski, joka vuonna 1988 aloitti työn Escherichia coli -bakteerilla alkaen kasvattaa ja jakaa sitä systemaattisesti. Työ jatkuu edelleen.

Lenskin työryhmä ottaa kaikista bakteerikasvustoista päivittäin yhden prosentin uudelle alustalle, jotta he voivat seurata perimässä tapahtuvia muutoksia reaaliajassa. Työnsä Lenski aloitti 12 lähes identtisellä bakteeriviljelmällä, mutta kannat ovat muuntuneet vuosien aikana valtavasti. Yksi eristetty kanta on sopeutunut kasvamaan jopa sitruunahapossa, mitä mikään muu tunnettu E. coli -viljelmä ei ole pystynyt tekemään; tämä mutaatio tapahtui noin 31 000 sukupolven jälkeen.

Vaikka Lenski aluksi kuvitteli kasvattavansa bakteereja muutaman vuoden ja ehkä parin tuhannen sukupolven ajan, on tutkimusta nyt takana yli kolme vuosikymmentä ja yli 75 000 bakteerisukupolvea, jotka tarjoavat aitiopaikan evoluution tarkkailemiseen lähietäisyydeltä eikä tutkimukselle onneksi näy loppua.

Vuoden 2022 keväällä Lenski luovutti tutkimuksen vetovastuun professori Jeffrey E. Barrickille Teksasin yliopistosta. Kuka tietää minkälaisia mutaatioita Barrickin, ja aikanaan hänen työtään jatkavien tutkijoiden, kasvatuspulloissa vielä nähdään. Bakteerit nimittäin jatkavat jakaantumista sopivissa olosuhteissa paljon kauemmin kuin yhden tutkijan työuran ajan.

Pisimpään kestänyt musiikkikappale

Advertisement

Saksassa Sankt-Burchardin kirkossa, Halberstadtin kaupungissa, on tälläkin hetkellä soitossa maailman hitain ja pisimpään kestävä kappale. John Cagen uruille säveltämä ”Organ²/ASLSP” on suunniteltu sosiaaliseksi kokeeksi siitä, kuinka monta sukupolvea voi pitää yllä yhtä taideteosta.

Kappaleen soittaminen alkoi vuonna 2001 ja sen on määrä jatkua vuoteen 2640 saakka. Soinnut vaihtuvat erittäin harvakseltaan ja edellisen kerran uusi nuotti soitettiin helmikuun 5. päivänä vuonna 2022. Se on Halberstadtissa aina suuri juhlapäivä. Seuraavaa muutosta saadaan odottaa tasan kaksi vuotta, joten helmikuussa 2024 Sankt-Burchardin kirkossa tapahtuu ”taas”.

Kappale on esitetty lyhyempikestoisena versiona useampaan otteeseen, esimerkiksi vuonna 2009 Diane Luchese käytti soittamiseen 14 tuntia ja 56 minuuttia. Teoksen nimi pitää kuitenkin sisällään säveltäjän toiveen soittonopeudesta: ASLSP on lyhenne sanoista ”As Slow As Possible” eli niin hitaasti kuin mahdollista. Nyt vain täytyy toivoa, että urut kestävät seuraavat 618 vuotta!

Pikitippakoe

Queenslandin yliopistossa Australiassa aloitettiin vuonna 1927 pikitippakoe, jonka tavoitteena oli osoittaa, että kova ja kiinteä piki onkin huoneenlämmössä nestettä.

Professori Thomas Parnell oli niin vakuuttunut asiasta, että hän laittoi pikinäytteen kolmeksi vuodeksi asettumaan lasisuppiloon, jonka jälkeen suppilosta katkaistiin nokka. Sitten alkoi piinaava odotus.

Parnell ehti itse todistaa kahden, noin 8,5 vuoden välein, tippuvan pisaran muodostumisen, mutta ei ikinä päässyt näkemään varsinaista irtoamista. Pikitippakoetta päätettiin jatkaa Parnellin vuoden 1948 kuoleman jälkeen.

Advertisement

Tippoja on tähän mennessä irronnut yhdeksän, mutta kukaan ei ole päässyt näkemään sitä reaaliajassa. Vuoden 2000 putoamista varten laboratorioon oli asennettu kamera, mutta teknisten ongelmien vuoksi pisaran irtoamista ei onnistuttu tallentamaan.

Kun edellinen pikipisara vuonna 2014 oli koskettanut dekantterilasiin jo aiemmin valunutta pikeä, päätti eräs tutkijoista vaihtaa lasia, ja hänen osuessaan vahingossa alustaan, suppilo tärähti ja pisara tippui.

Kymmenennen pisaran muodostumista voi ”jännittää” webbikameran taltioimasta The Tenth Watch -live-seurannasta, mutta henkeään ei kannata pidättää, sillä arvioiden mukaan siihen menee suunnilleen kahdeksan vuotta. Suppilossa on sen verran pikeä, että koetta voidaan jatkaa vielä ainakin sadan vuoden ajan.

Professori Parnell oli kuitenkin oikeassa: piki tosiaankin virtaa huoneenlämmössä!

Idätyskoe

Syksyllä 1879 tohtori William Beal kylvi Michigan State -yliopiston maille salaiseen paikkaan eriskummallisen viljelyksen. Hän istutti maahan 20 ohutkaulaista lasipulloa, joissa kaikissa oli märkää hiekkaa ja siemeniä. Jokaisessa pullossa oli 50 siementä 23 eri kasvilajilta. Pullot jätettiin suljettuna maahan, jotta vesi ei pääsisi vaikuttamaan siemeniin.

Bealin tarkoituksena ei ollut jatkaa tutkimusta vuosisatoja, vaan hän halusi vain selvittää, miten monta vuotta paikallisten kasvilajien siemenet säilyisivät itämiskykyisinä horroksessa ja täysin neutraalissa ympäristössä. Pullot oli määrä kaivaa ylös viiden vuoden välein, mutta jo vuonna 1920, vuosikymmen Bealin eläköitymisen jälkeen, tutkijakollegat totesivat, että koetta on syytä pidentää. Nyt siemenet kylvetään kahdenkymmenen vuoden välein.

Advertisement

Edellisen kerran pullo kaivettiin esiin toukokuussa 2021, vuosi suunniteltua myöhemmin, koska kevään 2020 maailmantilanteen vuoksi koetta jouduttiin siirtää vuodella eteenpäin. Kylvetyistä siemenistä 11 lähti itämään, mikä oli iloinen yllätys.

Muutama tutkijasukupolvi saa vielä jatkaa koetta, sillä tällä vauhdilla sen on määrä jatkua vuoteen 2100 saakka.

HeLa-solut

Kohdunkaulan syöpään lokakuun 4. päivänä vuonna 1951 menehtyneen yhdysvaltalaisen Henrietta Lacksin elämä jatkuu lähes jokaisessa maailman tutkimuslaboratoriossa, jossa käytetään ihmissoluja.

Ennen kuin vain 31-vuotias Lacks menehtyi, otettiin hänen kasvaimestaan soluja ilman hänen lupaansa tai tietämystään. Se oli tuohon aikaan suhteellisen normaali käytäntö.

Solut lähetettiin Lacksia hoitaneen Johns Hopkins -sairaalan läheisyydessä sijainneeseen kudoslaboratorioon tutkittavaksi – samoin kuin kaikkien muidenkin potilaiden solunäytteet.

Kaikki kohdunkaulan syöpäsolut kuitenkin kuolivat tutkija George Geyn maljoille, mutta toisin oli Henrietta Lacksin solujen laita. Solut tekivät jotain ennenkuulumatonta: ne jakaantuivat rajoittamattomasti noin vuorokauden välein eikä tuolle jakaantumiselle näy vieläkään loppua.

Advertisement

Solut on nimetty kantajansa mukaan ”kuolemattomaksi HeLa-solulinjaksi”, sillä niitä käytetään tutkimuksessa edelleen.

HeLa-solut ovat olleet mukana kehittämässä poliorokotetta, niillä on tutkittu syöpiä ja AIDS:ia sekä säteilyn ja myrkkyjen vaikutuksia. Niillä tehtiin myös uraauurtava työ ihmisen koko perimän selvittämisessä.

HeLa-solut ovat monen opiskelijan ensimmäinen kosketus solubiologian maailmaan. Kymmeniätuhansia kiloja HeLa-soluja on kasvatettu maailman laboratorioissa viimeisen 70 vuoden aikana ja jokainen yksittäinen solu on alkuperäisten näytesolujen jälkeläisiä.

Aikuisen elämä

Ihmisen pitkäaikaista käytöstä on hankala tutkia muuten kuin tilastoja läpi käymällä, sillä vuosikymmeniä kestävät tutkimukset ovat hankalia suorittaa.

Kaikkein mittavin ihmisten elämää koskeva pitkäaikaistutkimus on suoritettu Harvardin yliopistossa, jossa kyseisestä opinahjosta vuosina 1939-1944 valmistuneiden miesten elämää on verrattu Bostonin kantakaupungissa asuneiden miesten elämään.

Kahden vuoden välein tutkimukseen osallistujat ovat täyttäneet laajan kyselyn koskien omaa henkistä, sosiaalista ja fyysistä hyvinvointiaan.

Advertisement

Näin tutkijat ovat saaneet ennennäkemätöntä tietoa siitä, miten ympäristö ja perimä vaikuttavat ihmisen elämään, ja minkälainen vaikutus sosiaalisilla suhteilla ja taloudellisella tilanteella on ihmisen terveyteen ja vanhenemisprosessiin. Tutkimuksiin valitut ryhmät olivat sosiaalisen hierarkian ääripäistä, mutta kaikista eroista huolimatta tutkijat ovat tulleet yhteen merkittävään lopputulokseen: Kaikkein eniten ihmisen elämään ja onnellisuuteen vaikuttavat lämpimät ja läheiset ihmissuhteet. Kahdeksankymmentä vuotta kestäneen tutkimuksen tärkein anti (kaikessa yksinkertaisuudessaan) on tähän mennessä ollut se, että rakkaus on ainut, mitä ihminen tarvitsee onnelliseen elämään.

Mutta tutkimus ei suinkaan ole ohi. Nyt vuorossa ovat alkuperäisten osallistujien jälkeläiset sekä heidän elämiensä seuraaminen.

Vesuviuksen havaintoasema

Italiassa, lähellä Napolia, sijaitsee tunnettu tulivuori nimeltään Vesuvius. Sen purkautuminen vuonna 79 tuhosi muun muassa Pompeijin kaupungin tappaen tuhansia ihmisiä.

Vesuvius on purkautunut tuhoisasti ja säännöllisesti tuhansien vuosien ajan, viimeksi vuonna 1944. Tällä hetkellä on käynnissä pisin hiljainen kausi 500 vuoteen, mutta tulivuori ei missään nimessä ole sammunut, vaan se on edelleen aktiivinen. Nyt vain odotellaan, koska se purkautuu seuraavan kerran.

Vesuvius on yksi vanhimmista luonnon laboratorioista, sillä sitä on seurattu tarkkaavaisesti vuodesta 1841 lähtien. Päivittäin valtavan määrän seismistä dataa keräävän havaintoaseman päätehtävänä on tulkita ja ennustaa, milloin seuraava räjähdys tapahtuu. Ei paineita!

Advertisement

Lintujen laskeminen

Jos ajassa mennään taaksepäin reippaat sata vuotta, olivat joulut Pohjois-Amerikassa talvehtiville linnuille erityisen riskaabelia aikaa. Joulun juhlintaan nimittäin kuului aktiviteetti, jossa ihmiset jakaantuivat pieniin ryhmiin, suuntasivat luontoon ja ampuivat niin monta lintua kuin mahdollista. Se oli idea joulunpyhien hauskanpidosta.

Kaikki kuitenkin muuttui, kun lintututkija Frank M. Chapman lähestyi metsästäjiä ja ehdotti näille jotain radikaalia: Mitä jos nämä tappamisen sijaan laskisivat lintuja? Chapman ei varmaankaan olettanut, että ehdotus menisi millään muotoa läpi, mutta toisin kävi. Lukuisat metsästysryhmät läpi maan innostuivat, ja vuosien mittaan laskeminen kasvoi kokonaisvaltaiseksi tarkkailuksi, kun ihmiset rupesivat kirjaamaan ylös muun muassa lintujen muuttoja.

Joulun lintulaskenta järjestettiin viime vuodenvaihteessa jo 122. kerran, ja se on maailman pisin vapaaehtoisvoimin suoritettu, yhtäjaksoinen tutkimus. Pähkähullusta ideasta lähtenyt bongailu tarjoaa tutkijoille vuosittain kattavan ja ajantasalla olevan tietopaketin lintujen liikkeistä ja sopeutumisesta esimerkiksi ilmastonmuutoksen tuomiin haasteisiin.

Lue myös:

Continue Reading

Tiede

10 huippufaktaa vuorista ja vuoristoista – osa 1

Julkaistu

Tällä listalla on luvassa yllättäviäkin huppufaktoja vuorista ja vuoristoista.

Vaikka meille suomalaisille vuoristot ovat lähinnä matkailukohteita muualla maailmassa, ovat vuoristot koti noin 15 prosentille maapallon väestöstä. Nyt listataan faktoja vuorista ja vuoristoista.

Hieman alle kolmasosa maapallon maapinta-alasta on vuoristoa ja näillä alueilla asuu noin 1,1 miljardia ihmistä, joista iso on vähävaraisia. Vuorten rinteillä ja läheisyydessä asuvat ihmiset ovat täysin riippuvaisia vuoristojen luonnosta, vedestä ja nykyään myös niille suuntautuvasta turismista. Tällä listalla on luvassa monenlaista asiaa: paljon tietoa ja yllättäviä faktoja. Tervetuloa vuorten jylhään maailmaan!

Lista julkaistaan kahdessa osassa, joista tämä on ensimmäinen. Jälkimmäiset vuorifaktat ovat luvassa huomenna.

Maailman korkeimmat vuoret sijaitsevat yhdessä vuoristossa

Korkeita vuoria on ympäri maailmaa, mutta on yksi paikka ylitse muiden. Himalaja on erityinen niin vuorten korkeudessa kuin määrässäkin. Maailmassa on 14 kappaletta yli 8000 metrin korkuista vuorta ja ne kaikki sijaitsevat Himalajalla. Himalajan vuoristoryhmään katsotaan kuuluvaksi myös Hinukušin ja Karakoumin vuoristot, joista jälkimmäisessä sijaitsee muun muassa maailman toiseksi korkein vuori, K2 (kuvassa).

Aika pitkälle pitää korkeimpien vuorten listalla mennä, että päästään pois Aasiasta. Argentiinassa kohoava Aconcagua on korkein huippu Aasian ulkopuolella. Korkeutta Aconcagualla on 6962 metriä ja se on korkeimpien vuorten joukossa sijaluvulla 189.

Korkein vuori, jolle ei ole kiivetty

Vaikka valtaosa maailman korkeimmista huipuista on valloitettu, on yksi niistä suurimmista koskematon. Bhutanissa sijaitseva Gangkhar Puensum on maailman 40. korkein vuori, mutta kukaan ei ainakaan virallisten tietojen mukaan ole käynyt sen huipulla.

Vuonna 1999 japanilainen retkikunta sai Kiinalta luvan kiivetä Gangkhar Puensumin sivuhuipulle, joka joidenkin karttojen mukaan sijaitsee Tiibetin puolella. Tuo sivuhuippukin – Liankang Kangri – kohoaa yli 7,5 kilometriin, mutta Bhutanin puolella oleva 7570 metrin korkuinen Gangkhar Puensum on valloittamatta.

Advertisement

Bhutan on vuodesta 1994 lähtien kieltänyt kaikille yli 6000 metrin korkuisille vuorille kiipeämisen. Syyt ovat lähinnä hengellisiä, sillä Bhutanissa vuoret nähdään pyhinä paikkoina, joissa asuu jumalolentoja ja henkiä. Toisaalta paikalliset olivat tietoisia siitä, minkälaiseen kuntoon Mount Everest on kaiken roskaamisen myötä mennyt ja he painostivat hallitusta säästämään arvokkaan vuoren samalta kohtalolta.

Ennen lain voimaantuloa huipulle kyllä pyrittiin, mutta kaikki yritykset menivät syystä tai toisesta mönkään. Ehkäpä vuorten asukit eivät halunneet rauhaansa häirittävän?

Jotenkin tästä tulee hyvä olo. Maailmassa on vielä paikkoja, joihin ihminen ei pääse sekaamaan!

Maailman vanhin vuoristo

Etelä-Afrikassa ja Eswatinissa sijaitseva Makhonjwan vuoristo, toiselta nimeltään Barberton Greenstone Belt, on tutkijoiden mukaan maailman vanhin vuoristo. Sillä on ikää noin 3,6 miljardia vuotta. Maapallon arvioidaan olevan noin 4,5 miljardin vuoden ikäinen.

Makhonjwan vuoristo kohoaa korkeimmillaan 1800 metriin, joten kyse on melko matalasta vuoristosta. Se on täysin ymmärrettävää, sillä vuosimiljardien aikana korkeimmat huiput ovat kuluneet pois. Vuoristo on kuitenkin ikäänsä nähden säilynyt erityisen hyvin, joten se on tarjonnut ainutlaatuisen mahdollisuuden kurkistaa maapallon historiaan.

Sieltä on löytynyt vanhimpia kiistattomia merkkejä elämästä, ja vuorten kerrostumia tutkimalla päästäänkin näkemään siihen maailmaan, jossa elämä aikoinaan alkoi kehittymään.

Advertisement

Muutamia vuosia sitten geologit löysivät Makhonjwasta merkkejä ulkoavaruudesta peräisin olevista orgaanisista molekyyleistä. Se on tiedetty jo pitkään, että esimerkiksi metaania ja ehkä jopa aminohappoja esiintyy avaruudessa. Erään teorian mukaan näitä molekyylejä on tullut asteroidien mukana Maahan ja ne ovat edesauttaneet, ehkäpä jopa mahdollistaneet, elämän synnyn tällä planeetalla.

Makhonjwan vuoristosta löytyneessä, noin 3,3 miljardia vuotta vanhassa, vulkaanisessa kiviaineksessa oli tutkijoiden yllätykseksi merkkejä orgaanisista hiilimolekyyleistä. Se oli ensimmäinen kerta, kun Maassa olevista kivistä löytyi konkreettisia todisteita Maan ulkopuolisesta hiilestä.

Mitä salaisuuksia maailman vanhin vuoristo voikaan vielä paljastaa?

Korkein ihmiskunnan tuntema vuori sijaitsee Marsissa

Mount Everest on maapallon korkein vuori, vaikka tähänkin aiheeseen palataan muutamalla vastaväitteellä listan viimeisessä kohdassa. Mutta korkein ihmiskunnan tuntema vuori sijaitsee toisella planeetalla: Marsissa. Olympus Mons on noin kolme kertaa Mt. Everestiä korkeampi.

Olympus Mons on määritelmästä riippuen 22–27 kilometriä korkea ja leveyttä sillä on jopa 700 kilometriä. Tämä sammunut tulivuori on noin Puolan kokoinen. Olympus Mons on niin massiivinen, että jos sen korkeimmalla kohdalla seisoisi, ei tajuaisi olevansa vuoren huipulla, sillä vuoren rinnettä ei erottaisi planeetan kaarevuudesta. Samasta syystä vuorta voi havainnoida vain ylhäältä päin, sillä planeetan pinnalta katsoessa vuorenrinteet painuvat horisontin taakse.

Ihmisten juomavesi tulee vuorilta

Kuten aivan alussa mainittiin, ovat vuoristot koti noin 15 prosentille maapallon väestöstä. Mutta yli puolet kaikista maailman ihmisistä saa juomavetensä vuorilta. Esimerkiksi New York, yksi maailman suurimmista kaupungeista, saa vetensä muutaman sadan kilometrin päässä pohjoisessa sijaitsevilta Catskillvuorilta.

Eikä kyse ole ainoastaan juomavedestä, sillä vettä tarvitaan viljelysten kastelemiseen. Tämän lisäksi muun muassa miljoonakaupunki Nairobissa suurin osa sähköstä tuotetaan vesivoimalla, jota saadaan Kenian suurimpaan jokeen, Tanaan, rakennetuista padoista. Tana-joki saa alkunsa Aberdaren vuoristosta.

Advertisement

Myös sellaiset metropolit kuin Rio de Janeiro, Tokio ja Melbourne ovat täysin riippuvaisia vuorilta tulevasta makeasta vedestä.

Ilmastonmuutoksen myötä jokia ruokkivat jäätiköt sulavat, mikä tulee vääjäämättä vaikuttamaan vedensaantiin. Suurin huoli ovat vuorten läheisyydessä ympäri maailmaa asuvat ihmiset, jotka jo nyt tuskailevat veden puutteen vuoksi.

Suurkaupunkeihin löydetään varmasti rahalla ratkaisu, mutta entäs vaikkapa köyhät maanviljelijät Kirgisiassa? Miten he kastelevat viljapeltonsa ja kiinnostaako ketään tarpeeksi?

Lue myös:

Continue Reading

Tiede

Krokotiili aiheutti lentokoneen tippumisen: 10 tapausta, joissa eläimet sabotoivat ihmisten toimia – osa 2

Julkaistu

Tällä listalla aiheena ovat tapaukset, joissa eläimet ovat sabotoineet ihmisten toimia.

Eläimet joutuvat monesti ahtaalle ihmisen toimien vuoksi. Tällä listalla käännetään asetelma kuitenkin toisin päin: eläimet tekevät kiusaa ihmisille – tietämättään, mutta kuitenkin!

Listafriikki esittelee nyt kymmenen kertaa, kun eläimet totesivat, että nyt on takaisinmaksun aika. Valitettavasti osa näistä onnettomista sattumista on koitunut kummankin osapuolen kohtaloksi, mutta toisinaan lopputulos on lähinnä huvittava.

Lista julkaistaan kahdessa osassa, joista tämä on jälkimmäinen. Ensimmäiset viisi tarinaa voit lukea tästä:

Ruotsin laivasto luuli silakan ”pieruja” venäläisiksi sukellusveneiksi: 10 tapausta, joissa eläimet sabotoivat ihmisten toimia – osa 1

Meduusat ydinvoimalan vaivana

Ydinvoimalat on lähes aina rakennettu veden äärelle. Ne tarvitsevat vettä sähköä tuottavien turbiinien pyörittämiseen, mutta vesi toimii myös reaktorin jäähdyttäjänä. Ylikuumentunut ydinreaktori ei tunnetusti ole hyvä juttu.

Veden läheisyys saattaa kuitenkin aiheuttaa myös ongelmia, sillä vuonna 2013 ruotsalainen Oskarshamnin ydinvoimala jouduttiin sulkemaan väliaikaisesti, sillä veden sisäänottoputket olivat menneet tukkoon. Syylliseksi osoittautui parvi meduusoja. Kyseessä ei ollut muutaman yksilön kokoontuminen, vaan eläimiä oli tuhansittain.

Advertisement

Ydinvoimalan mukaan kyseessä ei ollut ensimmäinen kerta, kun meduusat ovat tuottaneet ongelmia. Tutkijoiden mukaan se ei myöskään tule olemaan viimeinen kerta, sillä ylikalastuksen ja merien saastumisen seurauksena meduusoilla on vähemmän saalistajia, ja ne pystyvät tehokkaasti valtaamaan vähentyneiltä kaloilta vapautuvan ekosysteemin.

Krokotiili aiheutti lentokoneen tippumisen

Kongon demokraattisessa tasavallassa sattui ikävä lento-onnettomuus vuonna 2010, kun kone tuli alas ilman mitään selittävää syytä. Niin ainakin aluksi luultiin. Törmäyksessä menehtyi kaksikymmentä ihmistä ja vain yksi kyydissä ollut selvisi hengissä. Hänellä oli oma näkemyksensä onnettomuuteen johtaneista tapahtumista.

Selviytyjä kertoi, että noin 80 senttimetrin mittainen, salaa koneeseen tuotu krokotiili oli karannut erään matkustajan urheilukassista, mikä oli saanut aikaan valtavan paniikin. Ihmiset olivat paenneet verenhimoista matelijaa pienen lentokoneen etuosaan, mikä oli aiheuttanut epätasapainon ja tippumisen.

Onnettomuustutkijoiden mukaan myös krokotiili selvisi tuhosta hengissä, sillä heillä oli hallussaan videomateriaalia, jossa matelija marssii kylmän rauhallisesti ulos romuttuneesta koneesta.

Häiritty hiukkaskiihdytin

Sveitsissä, CERN-tutkimuskeskuksessa sijaitseva LHC-hiukkaskiihdytin (Large Hadron Collider) on monimutkaisin ja kallein (3,5 miljardia euroa) ihmisen koskaan tieteelle rakentama laite. Se on yhtäaikaa valtavan kokoinen ja äärimmäisen herkkä, joten on selvää, että joskus asiat eivät suju ongelmitta. Vuonna 2008 valmistunut laite on kokenut elinkaarensa aikana kolme eläinten aiheuttamaa käyttökatkosta.

Avaamista seuraavana vuonna laite jouduttiin sammuttamaan, sillä sen yli lentänyt lintu oli tiputtanut patongin kondensaattoriin, joka yhdisti hiukkaskiihdyttimen ulkopuoliseen sähkönsyöttäjään. Patonki aiheutti häiriön jäähdytyslaitteistossa, minkä seurauksena kiihdytin pääsi ylikuumenemaan. Lintu selvisi tapauksesta vahingoittumattomana ja löydettäessä se nautti onnellisena tippunutta lounaspatonkiaan.

Vuonna 2016 hiukkaskiihdytintä piinasivat näädät. Ne eivät kuitenkaan olleet yhtä onnekkaita kuin piknikille laskeutunut lintu. Alkuvuodesta yksi näätä pureskeli sähkökaapelin säpäleiksi aiheuttaen itselleen kohtalokkaan sätkyn ja laitteen sulkemisen viikon ajaksi.

Advertisement

Myöhemmin toinen epäonninen näätä löysi tiensä hiukkaskiihdyttimen sisään ja osui muuntajaan. Eläimen läpi kulki noin 18 000 volttia, jotka käräyttivät sen niille sijoilleen. Iskun saanut näätä on nähtävillä Rotterdamin luonnontieteellisessä museossa.

Varpusen dominoefekti

Amsterdamissa valmistauduttiin kesällä 2005 rikkomaan Guinnessin maailmanennätys dominopalikoiden kaatamisessa. Useiden viikkojen ajan osallistujat olivat rakentaneet 4,1 miljoonan palan muodostelman, mutta juuri ennen h-hetkeä paikalle lenteli varpunen.

Lintu laskeutui yhden palikan päälle, aiheutti kirjaimellisen dominoefektin ja 23 000 palan kaatumisen. Järjestäjät eivät olleet varpusen tempusta innoissaan, joten he kutsuivat paikalle tuholaistorjujan, joka ampui linnun.

Palikat nostettiin pystyyn, dominojen ketjureaktio kesti kaksi tuntia ja maailmanennätys tuli rikottua. Hollantilaisia ei kuitenkaan kiinnostanut ennätyksen rikkominen, sillä he olivat tyrmistyneitä maassaan uhanalaisen linnun tappamisesta. Pian nettiin aukaistiin surunvalittelusivusto, jonne yli 5000 ihmistä kävi lyhyessä ajassa kirjoittamassa osanottonsa laittoman ampumisen vuoksi menetetylle linnulle. Kyseinen varpunen on muuten täytettynä samassa rotterdamilaisessa museossa kuin hiukkaskiihdyttimessä kärähtänyt näätä.

Puluja vai alkuräjähdys?

Vielä 1900-luvun puolivälissä universumin synnystä oli kaksi kilpailevaa teoriaa. Ensimmäisen mukaan universumi on iankaikkinen, päättymätön ja muuttumaton. Toinen teoria perustui alkuräjähdykseen, jonka mukaan universumi olisi joskus ollut paljon nykyistä pienempi. Teorioita tutkivien ja todistusaineistoa keräävien fyysikoiden työ oli mennä lähes pilalle pulujen takia.

Vuonna 1964 astronomit Robert Wilson ja Arno Penzias yrittivät mitata yötaivaan kirkkautta mikroaaltotunnistimella. Se osoittautui hankalaksi, sillä aina, kun tutkijat osoittavat teleskooppinsa taivaalle, kuului vain tasaista surinaa.

He sulkivat pois kaikki mahdolliset häiriötekijät, mutta outo signaali ei hävinnyt. Sitten he huomasivat pulupariskunnan nukkumassa välineidensä päällä. Wilson ja Penzias olettivat, että laitteiston havaitsema epämääräinen humina johtui pulujen ulosteista.

Advertisement

Linnut otettiin kiinni, lähetettiin 50 kilometrin päässä asuneelle pulujen kasvattajalle ja sitten jätökset putsattiin pois. Mutta ei aikaakaan, kun vapautetut linnut löysivät tiensä rakkaalle teleskoopilleen. Tutkijoiden ja pulujen välinen kamppailu kesti kuukausien ajan, mutta jossain vaiheessa linnut poistettiin lopullisesti kuvioista. Silloin Wilson ja Penzias ymmärsivät, että signaali tuli itseasiassa taivaalta eikä ulosteista.

Joka puolella universumissa on kosmista taustasäteilyä, jonka Wilson ja Penzias havaitsivat ensimmäisinä maailmassa. Se oli tärkeä todiste toisen universumin syntymallin puolesta, sillä juuri alkuräjähdysteoria ennusti taustasäteilyn olemassa olon. Wilsonille ja Penziasille myönnettiin löydöksestä Nobelin fysiikan palkinnon vuonna 1978.

Lue myös:

Continue Reading

Tiede

Ruotsin laivasto luuli silakan ”pieruja” venäläisiksi sukellusveneiksi: 10 tapausta, joissa eläimet sabotoivat ihmisten toimia – osa 1

Julkaistu

Takaisinmaksun aika! Listafriikki esittelee nyt kymmenen tapausta, joissa eläimet ovat aiheuttaneet kaaosta ja sabotoineet ihmisiä. Joskus niinkin päin.

Yleensä se on ihminen, joka laittaa eläimet ahtaalle omalla toiminnallaan. Tällä listalla käännetään asetelma kuitenkin toisin päin.

Listafriikki esittelee nyt kymmenen kertaa, kun eläimet totesivat, että nyt on takaisinmaksun aika. Valitettavasti osa näistä onnettomista sattumista on koitunut kummankin osapuolen kohtaloksi, mutta toisinaan lopputulos on lähinnä huvittava. 

Lista julkaistaan kahdessa osassa, joista tämä on ensimmäinen. Jälkimmäiset viisi tarinaa voit lukea tästä:

Krokotiili aiheutti lentokoneen tippumisen: 10 tapausta, joissa eläimet sabotoivat ihmisten toimia – osa 2

Kotka aiheutti valtavan puhelinlaskun

Vaeltavia arokotkia tutkiva venäläinen luonnonsuojelu- ja tutkimusryhmä ajautui vararikkoon kesällä 2019, kun sen rengastamat linnut lensivät Iraniin. 

Tutkijat olivat rengastaneet 13 kotkaa, joiden muuttomatkaa etelään he halusivat seurata. Seurantalaitteen oli tarkoitus lähettää päivittäin neljä tekstiviestiä, joiden sisältämän GPS-datan avulla lintujen vaellusta voitiin seurata hyvinkin tarkasti.

Advertisement

Muutama lintu päätyi kuitenkin lentämään Kazakstanin syrjäseuduille, jossa ei ollut signaaleja välittäviä puhelinmastoja, joten tekstiviestit pääsivät kuukausien aikana kasaantumaan. Tutkijat vastaanottivat suuren määrän viestejä vasta siinä vaiheessa, kun kotkat lokakuussa saapuivat Iraniin.

Iranista lähetetyt viestit olivat kolme kertaa hintavampia kuin Kazakstanissa, joten tutkijoiden jo valmiiksi niukka budjetti koko vuodelle paloi odottamattomalle reitille suunnanneisiin lintuihin. Yhteyttä ei oltu ymmärretty sulkea, sillä kotkien suunnasta ei lähtemättömien viestien vuoksi ollut mitään tietoa.

Puhelinoperaattori Megafon tarjoutui mitätöimään velan, vaikka sosiaalisessa mediassa oli jo aloitettu joukkorahoituskampanja uhanalaisten kotkien tutkimustyön turvaamiseksi. Megafon tarjosi kotkille myös entistä edullisemman liittymäpaketin tulevia reissuja varten.

Diamond-koira ajoi Newtonin hulluuden partaalle

Lemmikit ovat omistajilleen rakkaita perheenjäseniä, mutta ne voivat kuitenkin aiheuttaa myös päänvaivaa. Hyvänä esimerkkinä toimivat englantilainen tiedemies Isaac Newton ja hänen Diamond-koiransa.

Newton työsti 1680-luvulla kiivaasti uutta käsikirjoitustaan, joka piti sisällään muun muassa kuuluisat painovoima- ja liikelait. Kynttilän valossa kirjoittaneen Newtonin seurana oli pomeranian-rotuinen Diamond, joka oli eräänä iltana tavallista vilkkaammalla tuulella ja juoksi päin pöydänjalkaa.

Tärähdyksen seurauksena pöydällä ollut kynttilä kaatui Newtonin papereiden päälle ja poltti ne poroksi. Lähes vuoden työ oli mennyttä, mutta Newton suhtautui tuhoon aluksi yllättävän rauhallisesti. Hän nosti koiransa syliinsä ja sanoi tälle: ”Voi Diamond, Diamond, et tiedäkään minkälaisen koiruuden menit minulle tekemään.”

Advertisement

Papereiden palaminen alkoi kuitenkin painamaan Newtonin mieltä: hän ei löytänyt motivaatiota kaiken uudelleen kirjoittamiseen ja vaipui useiden kuukausien ajaksi masennukseen. Oli hyvin lähellä, että Newton ei olisi koskaan saanut muodostettua painovoimateoriaansa uudelleen, mutta jossain vaiheessa päivä alkoi jälleen paistaa risukasaan.

Philosophiae Naturalis Principia Mathematica, yksi historian merkittävimmistä tieteellisistä kirjoista, julkaistiin vuonna 1687.

Ruotsin laivasto säikähti silakan pieruja

Itämerellä elettiin 1980-luvulla jännittäviä aikoja. Ruotsin laivaston vedenalaiset mikrofonit olivat havainneet vieraita ääniä omilla merialueillaan. Hallitus oli varma, että kyseessä oli rajoja loukkaavat venäläiset sukellusveneet. Ruotsi ilmaisi huolensa Neuvostoliitolle, mutta äänet eivät kadonneet mihinkään. Sen suurempiin toimiin länsinaapurissa ei ryhdytty, sillä kukaan ei halunnut ylimääräisiä selkkauksia kylmän sodan aikana.

Vuonna 1982 Ruotsi määräsi lukuisia laivaston aluksia, sukellusveneitä ja helikoptereita kokonaiseksi kuukaudeksi etsimään tunnistamatonta vedenalaista kohdetta, mutta turhaan.

Advertisement

Kun Neuvostoliitto vuonna 1991 kaatui, oletettiin Ruotsissa, että sukellusveneet jättäisivät läntisen Itämeren rauhaan. Niin ei kuitenkaan käynyt. Siinä vaiheessa kärsivällisyys loppui ja pääministeri Carl Bildt otti yhteyttä Venäjän presidentti Boris Jeltsiniin esittäen virallisen valituksen laivaston käyttäytymisestä.

Ei kuitenkaan kulunut kauaa, kun ruotsalainen tutkijaryhmä löysi ”sukellusveneiden” äänille syyllisen: silakat, jotka vapauttavat peräaukostaan äänekkäästi ilmaa. Varsinaisesti niitä ei voi kutsua pieruiksi, sillä kaasu on pinnasta nielaistua ilmaa eikä ruoansulatuksen sivutuotetta. Silakoita saalistavat petokalat eivät kuule näitä ääniä, joten niiden on ajateltu olevan nerokas, lajinsisäinen tapa kommunikoida. 

Julkisuuteen ei ole koskaan paljastettu, kuinka paljon silakan pierut tulivat Ruotsin puolustusvoimille ja rajavartiostolle yli kymmenen vuoden aikana maksamaan. 

Päivänkorennot pysäyttävät liikenteen

Päivänkorennot eli surviaiset ovat hyönteisiä, jotka viettävät suurimman osan elämästään toukkina vedessä. Ne kuoriutuvat ja kehittyvät aikuisiksi, lentäviksi korennoiksi vain yhden asian vuoksi: löytääkseen lisääntymiskumppanin.

Advertisement

Päivänkorennoille on kehittynyt populaation menestymiseen tähtäävä sopeuma, sillä usein ne ajoittavat kuoriutumisen samaan ajankohtaan ja lähtevät lentoon suurissa parvissa; tämä vähentää syödyksi tulemisen mahdollisuutta. Päivänkorentoparvet voivat kasvaa ilmestyskirjamaisiin mittasuhteisiin, sillä suurimmat parvet näkyvät jopa satelliittikuvissa.

Koska valo vetää hyönteisiä puoleensa, voi autolla ajaminen parven lähistöllä olla hengenvaarallista yöaikaan. Vain muutaman senttimetrin mittaiset yksilöt muodostavat kasaantuessaan valtavia kerroksia, jotka tekevät teiden pinnoista jäätäkin liukkaampia. Ylläolevalla videolla on kuvaa korentoparven vuoksi suljetulta sillalta. Tuulilaseja peittäneet ja näkyvyyden estäneet päivänkorennot aiheuttavat vuosittain lukuisia liikenneonnettomuuksia.

Kanadanhanhet pakottivat lentokoneen jokeen

Taivaalla on ruuhkaa. Lennonjohto pystyy monitoroimaan ja estämään lentokoneiden yhteentörmäyksiä, mutta ihmisen rakentamat kulkuneuvot eivät ole ainoita ilmassa liikkuvia asioita.

Lintuja päätyy jatkuvasti lentokoneiden moottoreihin, ja koneille aiheuttamien vahinkojen arvellaan olevan maailmanlaajuisesti miljardin euron luokkaa. Joka vuosi.

Joskus moottoreihin päätyvät linnut aiheuttavat todellisia vaaratilanteita. Yksittäiset linnut harvemmin saavat suurta tuhoa aikaan, mutta vuonna 2009 parvi suuria kanadanhanhia lensi US Airways -lentoyhtiön matkustajakoneen moottoriin ja pakotti lentäjän tekemään hätälaskun Hudson-jokeen New Yorkissa. Kuten monet yhteentörmäykset lintujen kanssa, niin tämäkin onnettomuus sattui pian nousun jälkeen. Sen vuoksi useilla lentokentillä on valoja, kaiuttimia ja jopa istutettuja petolintuja pitämässä parvet etäällä laskeutuvista ja nousevista koneista.

Lue myös:

Advertisement
Continue Reading

Tiede

Timanttisade on aurinkokuntamme yleisin sadetyyppi – Top 10 universumin äärimmäiset olosuhteet ja sääilmiöt

Julkaistu

Maapallon sääilmiöt saattavat välillä tuntua äärimmäisiltä, mutta ne eivät ole mitään verrattuna siihen, mitä universumin muilla taivaankappaleilla tapahtuu.

Rankkasateita, paahtavaa kuumuutta, hurrikaaneja ja purevia pakkasia. Maapallon monenlaiset sääilmiöt eivät kuitenkaan ole mitään verrattuna universumin muihin taivaankappaleisiin.

Ehkäpä juuri siksi elämä, sellaisena kuin me sen tiedämme, on kehittynyt juuri Maassa. Toisaalta taas elämä itsessään on muokannut säätä kotiplaneetallamme. Maapallon sääilmiöitä on helppo tutkia ja havainnoida, mutta on uskomatonta, miten paljon myös muiden planeettojen ja kuiden olosuhteista tiedetään. Niitä kun ei vain tarkastella katsomalla ulos ikkunasta.

Tällä kertaa Listafriikki matkaa kanssanne pitkin kotigalaksiamme Linnunrataa. Näihin äärimmäisiin sääilmiöihin tutustumisen jälkeen täytyy kyllä pari kertaa miettiä, ennen kuin valittaa pienestä tuulesta ja tuiskusta!

Ikuinen hurrikaani

Maapallolla hurrikaanit keräävät voimiaan merillä päivien tai parhaimmillaan viikkojen ajan, mutta maakosketuksen jälkeen ne kulkevat vain tunteja. Aurinkokuntamme suurimman planeetan, Jupiterin, kaasumaisella pinnalla on kulkenut Suurena punaisena pilkkuna tunnettu pyörremyrsky ainakin 200 vuotta.

Jupiteria on tutkittu jo 600-luvulta lähtien, ja 1600-luvulla kuuluisa astronomi Cassini kirjoitti Jupiterin ”pysyvästä myrskystä”, jonka ajatellaan viittaavaan tähän planeetan pinnalla selvästi näkyvään täplään. Virallisesti myrskyn havaitsi ensimmäisen kerran tähtitieteen harrastaja Samuel Heinrich Schwabe vuonna 1831.

Hurrikaani kiertää planeetan 14:ssä Jupiterin päivässä ja myrskyn kummallisin ominaisuus on se, että reunoilla tuulet puhaltavat reilut 150 metriä sekunnissa, mutta ydin on suhteellisen tyyni.

Vedystä ja heliumista koostuva hurrikaani pysyy voimissaan, koska Jupiterin pinnalla ei tiettävästi ole mitään kiinteää, joka hidastaisi sen menoa. Jos mitenkään on mahdollista päästä käsiksi teleskooppiin, niin kannattaa suunnata se Jupiteriin, sillä useiden sukupolvien ajan ihmisiä kiehtonut Suuri punainen pilkku saattaa hävitä seuraavien vuosikymmenten aikana. Se on pitkään ollut kutistumaan päin; joskus kolme kertaa Maan kokoinen myrsky voisi nielaista ”enää” kaksi maapalloa.

Kristallisade

Orionin tähdistössä, 1350 valovuoden päässä maapallosta, sijaitsee tuoreehko tähti nimeltään HOPS-68. Meidän oma Aurinkomme on ollut joskus sen kaltainen ja sekin on silloin saanut niskaansa vihreiden kristallien sadekuuroja.

Oliviinikristallit ovat todennäköisesti peräisin syntyvästä tähdestä itsestään, kun sen kaasupurskahdukset syöksevät ainetta avaruuteen. Tähteä ympäröi viileä kaasupilvi, jonka hyvin kylmät olosuhteet saavat oliviinin ripottelemaan takaisin vihreänä jalokivisateena.

Samanlaisia kristalleja on löydetty myös aurinkokuntamme laitamilla syntyneistä komeetoista. Vihreiden jalokivien löytyminen kivisistä kiertolaisista oli aiemmin suuri mysteeri, mutta Spitzer-satelliitin 2000-luvun alussa tekemät havainnot HOPS-68:sta paljastivat niidenkin alkuperää. Aurinko on syntyaikoinaan syössyt tulikuumassa ytimessään syntyneitä kristalleja kaasupilveensä, josta niitä on satanut ja jäätynyt kiinni muihin taivaankappaleisiin.

Lunta syöksevät tulivuoret

Lunta ja jäätä syöksevät tulivuoret, vai pitääkö niitä kutsua lumivuoriksi, ovat tavallaan hyvin samankaltaisia Maan ”perinteisten” tulivuorten kanssa. Ne kohoavat maisemasta ylös, ja purkautuvat syösten nestemäistä sisältöään ympärilleen. Nimestäkin varmasti voi päätellä, että niistä ei tule ulos tulikuumaa magmaa, vaan lunta ja jäätä.

Marsin ja Jupiterin välisellä asteroidivyöhykkeellä kiertävä kääpiöplaneetta Ceres on esimerkki tällaisesta kryovulkanismista. Ceresissä sijaitsevan yhden ainoan tulivuoren sisällä on veteen sekoittuneena metaania, ammoniakkia ja klooria – samoja aineita siis, joista kääpiöplaneetan kuori koostuu. Purkautumismekanismia ei tiedetä, mutta jostain syystä nestemäinen sisu ryöpsähtää voimalla ulos, usein jähmettyen nopeasti alhaisen lämpötilan vuoksi.

Neptunuksen ja Jupiterin jäisissä kuissa on lumitulivuoria, samoin kuin planeettojen joukosta vuosia sitten pudotetussa Plutossa ja sen Kharon-kuussa. Saturnuksen kiertolaisessa, Enceladuksessa, on havaittu jopa 500 kilometrin korkeuteen nousevia nestepurkauksia.

Tutkijat arvelevat lumitulivuorten olevan hyvinkin yleisiä aurinkokunnassamme ja ohjaamalla satelliitteja purkautuvien nesteiden läpi, voitaisiin saada arvokas katsaus hyytävän kylmien taivaankappaleiden suliin sisuksiin. Mahdollisia elämän merkkejä etsien tietenkin!

Lue myös: Ei jos, vaan kun purkaus tapahtuu: Tässä ovat maailman vaarallisimmat tulivuoret!

Metaanisade

Saturnuksen suurin ja tunnetuin kuu on Titan. Sen arvoitukset pysyivät pitkään piilossa paksun pilviverhon takana, mutta kun sen oranssiin maailmaan päästiin vihdoin vuonna 2004 näkemään, olivat kaikki yllättyneitä.

Titanilla on jokia, järviä ja jäätiköitä. Siellä myös sataa, ja napa-alueiden vuoret ovat lumen peitossa. Kuulostaako siltä, että Titan olisi hyvä paikka ihmisten yhteiskunnan perustamiselle? Sitä on usein pidetty potentiaalisena kohteena.

Titanin pinnalla ei kuitenkaan ole vettä; se olisi joka tapauksessa ikijäässä -180 celsiusasteen lämpötilassa. Kylmyyden ja kovemman paineen ansiosta meille kaasuina tutut metaani, etaani ja propaani virtaavat nestemäisinä muodostaen kemikaalijokia ja -meriä. Kaasumaisista pilvistä metaani sataa maahan ja kiinteässä muodossa metaanilumi peittää napojen lumitulivuoret, jotka aina silloin tällöin sylkevät räjähdysherkkää, nestemäistä ammoniakkia.

Polttoaineita Titanilta siis löytyisi – vaikka millä mitalla – mutta muuten meidän pitäisi odotella vielä kuutisen miljardia vuotta, jotta Aurinko lämmittäisi sitä tarpeeksi ja mahdollistaisi elämän. Toki siinä vaiheessa kuolemaa tekevä tähtemme on jo nielaissut aurinkokunnan kolme ensimmäistä planeettaa sisuksiinsa.

Vauhtia ja vaarallisia tilanteita eksoplaneetalla

Ketun tähdistössä, reilun 64 valovuoden päässä meistä, sijaitsee hyvin Maata muistuttava aurinkokunnan ulkopuolinen planeetta; kavereiden kesken se tunnetaan nimellä  HD 189733b. Se on väriltään sininen ja siellä on havaittu olevan vettä… ja siihen ne yhtäläisyydet sitten loppuvatkin.

Noin Jupiterin kokoisella eksoplaneetalla puhaltavat tappavat tuulet 2 km/s voimakkuudella, mikä on muuten seitsemän kertaa rivakampi vauhti kuin äänen nopeus.

Vaikka joku onneton avaruusmatkailija päätyisi kieppumaan kotoisan näköisen planeetan ikuisiin hirmutuuliin, ei hätää: matka päättyisi lyhyeen, joskin melko karmealla tavalla, koska lämpötila nousee päivisin jopa 1000 celsiusasteeseen. Tuulen ja lämpötilan lisäksi olosuhteet tekee ”haastaviksi” ilmakehässä oleva silikaatti. HD 189733b saa siitä kauniin sinisen värinsä, mutta toisaalta se tarkoittaa sitä, että planeetalla sataa vaakasuoraan lasia.

Timanttisade

Jokaikinen lumihiutale on ainutlaatuinen, sanotaan. Mutta miten sitten suu pantaisiin, jos taivaalta alkaisi sataa timantteja? Timanttisade on itseasiassa kaikkein yleisin sadetyyppi meidän aurinkokunnassamme.

Tätä sääilmiötä varten ei tarvi edes kovin kauas matkustaa, avaruuden etäisyyksillä mitattuna. Kaikilla kaasuplaneetoilla, kuten Jupiter, Saturnus, Uranus ja Neptunus, ilmakehässä on jonkun verran metaania, joka koostuu hiilestä ja vedystä.

Salamointi saa aikaan metaanin epätäydellisen palamisen, jonka tuotteena syntyy nokea. Kun noki tippuu alaspäin, kohti kaasuplaneetan kiinteää ydintä, kovettuu se ensin grafiitiksi, ja lopulta kasvavan paineen ja helvetin lieskoja vastaavan lämpötilan vaikutuksesta timanteiksi. Saturnuksessa muodostuu jopa 1000 tonnia timantteja vuodessa. Kaikki hiomattomia.

Jopa sormenpään kokoiset timantit eivät todennäköisesti kestä Jupiterin ja Saturnuksen sisäistä lämpötilaa, ja sulavat hiililammikoiksi, mutta Neptunuksen ja Uranuksen viileämmillä pinnoilla timantit todella ovat ikuisia.

Rikkihapposateet

Venusta ja Maata kutsutaan monesti kaksosplaneetoiksi. Myönnetään, ne ovat lähes samankokoiset, painavat saman verran ja niiden koostumus on hyvin samankaltainen. Mutta kaksoset? Siinä saa termiä kyllä venyttää.

Ihmisen näkökulmasta naapuriplaneettamme voisi yhtä hyvin olla universumin kaukaisimmalla reunalla. Venukselle on lähetetty luotaimia tutkimaan sen pintaa, mutta ne ovat planeetan olosuhteissa kestäneet ehjinä vain joitakin tunteja.

Ensinnäkin Venus on 480 celsiusasteen pintalämpötilallaan planeetoista kuumin, koska sen paksu, enimmäkseen hiilidioksidista koostuva ilmakehä sitoo auringon säteilyä huomattavasti enemmän kuin lähimpänä Aurinkoa kiertävä Merkurius. Venus on loistava esimerkki siitä, mitä kasvihuoneilmiö pahimmillaan voi tarkoittaa. Toisekseen, planeetan pinnalla paine on 90-kertainen Maahan verrattuna, joten silmät ja vähän muutakin putkahtaisivat ulos alta aikayksikön.

Vähän korkeammalla Venuksen ilmakehässä, jossa paine ja lämpötila hellittävät, on vastassa kuitenkin paksut läpinäkymättömät rikkihappopilvet. Ja missä pilviä, siellä sadetta. Venuksessa ei sada jalokiviä, vaan voimakkaasti syövyttävää rikkihappoa. Sateet eivät kuitenkaan koskaan saavuta Venuksen pintaa, koska neste höyrystyy korkean lämpötilan takia.

Ääntä nopeammat tuulet

Neptunuksella voi täysin yllättäen joutua myrskyn vietäväksi, sillä siellä puhaltavat aurinkokuntamme kovimmat tuulet. Voit kuulla tuulen ulvovan, mutta vasta sitten, kun se on jo siepannut sinut mukaansa. Neptunuksen 2300 kilometriä tunnissa puhaltavat myrskyt liikkuvat lähes kaksinkertaisella äänen nopeudella ja välillä ne muodostavat maapallon kokoisia pyörremyrskyjä (jotka kuitenkin katoavat aikanaan, toisin kuin Jupiterin ikuinen hurrikaani).

Neptunusta pantamaisesti kiertävät, metaanikiteistä koostuvat pilvet sekoittuvat tuulen voimasta kaasumaisen vety-helium-pinnan kanssa. Tällöin ilmakehään pääsee pieni määrä metaania, joka imee auringonvalosta pitkät aallonpituudet ja saa planeetan hehkumaan sinisenä.

Marsin lumimyrskyt

Kaikista toiveista ja unelmista huolimatta Marsista ei koskaan löytynyt pieniä vihreitä miehiä, vaikka heitä ehdittiin jo marsilaisiksi nimittämään.

Marsissa on todisteiden mukaan aikoinaan ollut virtaavaa, nestemäistä vettä. Sen nykyinen, ohut ilmakehä ei ole pystynyt estämään vettä haihtumasta, minkä takia sen maaperä onkin kuivaa, aavikkomaista kivikkoa. Välillä koko planeetan pinta peittyy valtavien tornadojen nostattamien pölypilvien alle.

Marsissa on hieman Maata muistuttavat vuodenajat ja kesällä päiväsaikaan siellä voi olla mukavat 20 astetta lämmintä. Yöksi elohopea laskee kuitenkin -70ºC:een, koska ohuen ilmakehänsä takia Mars ei pysty sitomaan auringon lämpöenergiaa. Talvella, ja napojen alueella, pakkasta voi olla napakka -125ºC:tta.

Ilmakehä Marsissa on suurimmaksi osaksi hiilidioksidia, joka vähän alle 80 pakkasasteessa härmistyy (kaasu muuttuu suoraan kiinteäksi) ja saa aikaan meillekin tutun kuivajään tai hiilihappojään muodostumisen. Kuivajää muodostaa pysyvän ikijään Marsin napojen peitoksi ja siitä syntyvät myös planeetan rajut lumimyrskyt.

Taivaalta sataa kaloja

Olihan meidän oma maapallommekin pakko saada listalle, vaikka sitten loppukevennyksenä. Missään muualla tässä aurinkokunnassa ei voi kokea kalojen satamista taivaalta. Entäs koko universumissa? Siitä Listafriikki ei voi mennä takuuseen, mutta aikamoinen yhteensattumien summa saisi tapahtua, että niin kävisi.

Mutta täälläpä niin voi käydä. Netistä voi löytää oikeita kuvia ja muokattuja kuvia, mutta kalojen ”sataminen” taivaalta on ilmiö, josta on kirjoitettu jo ennen ajan laskumme alkua. Meksikossa ja Hondurasissa on kyliä, joissa vuosittain kovien myrskyjen jälkeen maa on niin täynnä kaloja, että ihmiset keräävät niitä koreittain syötäväksi.

Tässä suoraan ilmestyskirjan sivuilta olevassa sääilmiössä ei tietenkään ole kyse siitä, että kalat putoaisivat pilvistä, vaan järven tai meren päällä syntyvä tornado nappaa kaloja mukaansa ja kuljettaa ne sisämaahan.

Kai olette katsoneet Haihurrikaani-elokuvia!?

Lue myös:

Continue Reading

Suosituimmat